Skip to main content
Log in

Evaluation of physio-biochemical potentials of alkaliphilic bacterial diversity in bauxite processing residues of diverse restoration history

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Bauxite residue, the waste by-product of bauxite ore processing in alumina industry is mostly deposited around the areas of alumina plants and often leads to a number of environmental and human health problems. Here we report the physico-chemical and microbiological analysis of bauxite residue samples of different restoration history (0–40 years). The samples were characterized by high alkalinity (pH 8.5–12.5) and metal content along with poor organic matter. While the presence of Sodalite, Hematite, Boehmite, Gibbsite, Anatase and Quartz was confirmed by X-ray powder diffraction (XRD) analysis, heavy metal contamination was evaluated by applying contamination factor and pollution load index. The aerobic microbial density as well as activity of the samples were in general very low and ranged from 1.2 to 8.96 × 102 cfu/g and 0.32–0.96 µg fluorescein/g/h. A total of 12 phenotypically distinguishable bacteria were isolated in pure form which showed significant tolerance to nickel (Ni), chromium (Cr), aluminium (Al), iron (Fe), manganese (Mn), magnesium (Mg) and lead (Pb), high pH and NaCl and were resistant to a number of antibiotics. Further, tolerance to alkalinity, transformation of waste to neutral one, production of diverse enzymes, extracellular polysaccharide and formation of biofilm, the unique features of these bacterial isolates could be of immense importance for potential applications in bioremediation and bioleaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238

    Article  CAS  Google Scholar 

  • Agnew MD, Kova SF, Jarrell KF (1995) Isolation and Characterization of Novel Alkaliphiles from Bauxite-Processing Waste and Description of Bacillus vedderi sp. nov., a New Obligate Alkaliphile System. Appl Microbiol 18:221–230

    CAS  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fert Soils 12:39–45

    Article  CAS  Google Scholar 

  • Arora A, Krishna P, Malik V, Reddy MS (2014) Alkali stable xylanase production by alkali tolerant Paenibacillus montaniterrae RMV1 isolated from red mud. J Basic Microbiol 54:1023–1029

    Article  CAS  Google Scholar 

  • Black CA (1965) Methods of soil analysis. Part I. American Society of Agronomy, Madison, p 1572

    Book  Google Scholar 

  • Charles CJ, Rout SP, Garratt EJ, Patel K, Laws AP, Humphreys N (2015) The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment. FEMS Microbiol Ecol 91(8): fiv085. https://doi.org/10.1093/femsec/fiv085

  • Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella. J Bacteriol 52:461–466

    Article  CAS  Google Scholar 

  • Christensen GD, Simpson WA, Bisno AL, Beachey EH (1982) Adherence of slime–producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37:318–326

    Article  CAS  Google Scholar 

  • Czövek D, Novák Z, Somlai C, Asztalos T, Tiszlavicz L, Bozóki Z, Ajtai T, Utry N, Filep A, Bari F, Peták F (2012) Respiratory consequences of red sludge dust inhalation in rats. Toxicol Lett 209:113–120

    Article  CAS  Google Scholar 

  • Dey S, Paul AK (2013) Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden. Braz J Microbiol 44(1):307–315

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Robers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Ghorbani Y, Oliazadeh M, Shahvedi A (2008) Aluminum solubilization from red mud by some indigenous fungi in Iran. J Appl Biosci 7:207–213

    Google Scholar 

  • Graefe M, Klauber C (2011) Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy 108 (1–2): 46–59.

  • Gräfe M, Power G, Klauber C (2011) Bauxite residue issues: III. Alkal Assoc Chem Hydrometal 108:60–79

    Article  CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–100

    Article  Google Scholar 

  • Hamdy MK, Williams FS (2001) Bacterial amelioration of bauxite residue waste of industrial alumina plants. J Ind Microbiol Biotechnol 27:228–233

    Article  CAS  Google Scholar 

  • Holt JG, Sneath PHA, Mair NS, Sharpe ME (1989) Bergey’s manual of systematic bateriology, vol 2. Williams and Wilkins, Baltimore

    Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT et al (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, pp 626–640

    Google Scholar 

  • Horikoshi K (1999) Akaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63(4):735–750

    Article  CAS  Google Scholar 

  • Jackson ML (1973) Soil chemical analysis, vol 14. Prentice Hall, New Delhi

    Google Scholar 

  • Jain RM, Mody K, Mishra A, Jha B (2012) Physicochemical characterization of biosurfactant and its potential to remove oil from soil and cotton cloth. Carbohydr Polym 89:1110–1116

    Article  CAS  Google Scholar 

  • Jarosɬawieck A, Seget-Piotrowska Z (2014) Lead resistance in micro-organisms. Microbiology 160(1):12–25

    Article  CAS  Google Scholar 

  • Joshi VK, Attri D, Bala A, Bhushan S (2003) Microbial Pigments. Indian. J Biotechnol 2:362–369

    CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    CAS  Google Scholar 

  • Klauber C, Gräfe M, Power G (2011) Bauxite residue issues: II. Opti Res Utilizat Hydrometal 108:11–32

    Article  CAS  Google Scholar 

  • Ko CH, Chen WL, Tsai CH, Jane WN, Liu CC, Tu J (2007) Paenibacillus campinasensis B L11: a wood material-utilizing bacterial strain isolated from black liquor. Bioresour Technol 98:2727–2733

    Article  CAS  Google Scholar 

  • Krishna P, Arora A, Reddy MS (2008) An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites. World J Microbiol Biotechnol 24:3079–3085

    Article  CAS  Google Scholar 

  • Krishna P, Babu AG, Reddy MS (2014) Bacterial diversity of extremely alkaline bauxite residue site of alumina industrial plant using culturable bacteria and residue 16S rRNA gene clones. Extremophiles 18:665–676

    Article  CAS  Google Scholar 

  • Kurdowski W, Sorrentino F (1997) in Waste Materials Used in Concrete Manufacturing. In: Satish C (ed) William Andrew Publishing, Noyes, pp. 290–308

  • Liao J, Jiang J, Xue S, Qingyu C, Wu H, Manikandan R, Hartley W, Huang L (2018) A novel acid-producing fungus isolated from bauxite residue: the potential to reduce the alkalinity. Geomicrobiol J 35(10):840–847. https://doi.org/10.1080/01490451.2018.1479807

    Article  CAS  Google Scholar 

  • Liu D-Y, Wu C-S (2012) Stockpiling and comprehensive utilization of red mud research progress. Materials 5:1232–1246

    Article  CAS  Google Scholar 

  • Liu C, Wang K, Jiang J, Liu W, Wang J (2015) A novel bioflocculant produced by a salt tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochem Eng J 93:166–172

    Article  CAS  Google Scholar 

  • Liu G-H, Prabhu M, Rao N, Wang X-Y, Chu T-W, Liu B,Li W-J (2020) Bacillus alkalicellulosilyticus sp. nov., isolated from extremely alkaline bauxite residue (red mud) site. Arch Microbiol. https://doi.org/10.1007/s00203-020-02063-y

  • Lui J-K, Jurtshuk P (1986) N, N, N’-N’-tetramethyl-pphenylenediamine-dependent cytochrome oxidase analyses of Bacillus species. Int J Syst Bacteriol 36:38–46

    Article  Google Scholar 

  • Ma L, Sun J, Yang Z, Wang L (2015) Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, southern China. Environ Monit Assess 187(12):731

    Article  CAS  Google Scholar 

  • MacConkey AT (1905) Lactose-fermenting bacteria in faeces. J Hyg 5:333–379

    Article  CAS  Google Scholar 

  • Mahadevan H, Chandwani HK, Prasad PM (1996) An appraisal of the methods for red mud disposal under Indian contition. In: Banerjee GN et al. (ed). Proc of Nat. Sem on Bauxite and Alumina (BAUXAL-96). Allied Publisher, New Delhi, India pp 337–347.

  • Martin JM, Meybeck M (1979) Elemental mass balance of materials carried by major world rivers. Mar Chem 7(3):173–206. https://doi.org/10.1016/0304-4203(79)90039-2

    Article  CAS  Google Scholar 

  • Mishra T, Singh NB, Singh N (2016) Restoration of red mud deposits by naturally growing vegetation. Int J Phytoremed 19(5):439–445. https://doi.org/10.1080/15226514.2016.1244162

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter: In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2 Chemical and Microbiological Properties, pp: 539–579.

  • Nogueira EW, Hayash EA, Alves E, Lima CAA, Adorno MT, Bruchal G (2017) Characterization of alkaliphilic bacteria isolated from bauxite residue in the Southern Region of Minas Gerais, Brazil. Braz Arch Biol Technol 60: e17160215.

  • Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy. In Soil Science Society of America, Vol. 1159.

  • Pal A, Dutta S, Mukherjee PK, Paul AK (2005) Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman. J Basic Microbiol 45:207–218

    Article  CAS  Google Scholar 

  • Pedrama H, Hosseinia MR, Bahramib A. (2020) Utilization of A. niger strains isolated from pistachio husk and grape skin in the bioleaching of valuable elements from red mud. Hydrometallurgy 198 (105495). https://doi.org/10.1016/j.hydromet.2020.105495

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Power G, Grafe M, Klauber C (2011) Bauxite residue issues: 1 Current management, disposal and storage practices. Hydrometallurgy 108(1–2):33–45

    Article  CAS  Google Scholar 

  • Qu, Y. Li H, Wang X, Tian W, Shi B, Yao M, Zhang Y (2019) Bioleaching of major, rare earth, and radioactive elements from red mud by using indigenous chemoheterotrophic bacterium Acetobacter sp. Minerals 9 (2): 67 https://doi.org/10.3390/min9020067

  • Qu Y, Lian B (2013) Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol 136:16–23

    Article  CAS  Google Scholar 

  • Qu Y, Lian B, Mo B, Liu C (2013) Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy 136:71–77

    Article  CAS  Google Scholar 

  • Ruyters S, Mertens J, Vassilieva E, Dehandschutter B, Poffijn A, Smolders E (2011) The red mud accident in Ajka (Hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil. Environ Sci Technol 45(4):1616–1622

    Article  CAS  Google Scholar 

  • Samal S, Ray AK, Bandhopadhyay A (2013) Proposal for resources, utilization and processes of red mud in India—a review. Int J Miner Process 118:43–55

    Article  CAS  Google Scholar 

  • Santini TC, Hinz C, Rate AW, Carter CM, Gilkes RJ (2011) In situ neutralization of uncarbonated residue mud by cross layer leaching with carbonated bauxite residue mud. J Hazard Mater 194:119–127

    Article  CAS  Google Scholar 

  • Schmalenberger A, Sullivan O, Gahan J, Cotter P, Courtney R (2013) Bacterial communities established in bauxite residues with different restoration histories. Environ Sci Technol 47(13):7110–7119

    Article  CAS  Google Scholar 

  • Schnurer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43(6):1256–1261

    Article  CAS  Google Scholar 

  • Simmons J (1926) A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi. J Infec Dis 39:209

    Article  Google Scholar 

  • Subbiah BV, Asija GL (1956) A rapid procedure for the determination of available nitrogen in soil. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Tomilson DC, Wilson DJ, Harris CR, Jeffrey DW (1980) Problem in heavy metals in estuaries and the formation of pollution index. Helgol Wiss Meere-sunlter 33(1–4):566–575

    Google Scholar 

  • Wang YT, Xiao C (1995) Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res 29:2467–2474

    Article  CAS  Google Scholar 

  • Wu H, Liao J, Zhu F, Millar G, Courtney R, Xue S (2019) Isolation of an acid producing Bacillus sp. EEEL02: potential for bauxite residue neutralization. J Cent South Univ 26:343–352

    Article  CAS  Google Scholar 

  • Xue S, Wu Y, Li Y, Kong X, Zhu F, William H, Li X, Ye Y (2019) Industrial wastes applications for alkalinity regulation in bauxite residue: a comprehensive review [J]. J Central South Univ 26(2):268–288. https://doi.org/10.1007/s11771-019-4000-3

    Article  CAS  Google Scholar 

  • Zhang Z, Cai R, Zhang W, Fu Y, Jiao N (2017) A Novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810. Mar Drugs 5(6): 175.

  • Zouboulis AI, Kydros KA (1993) Use of red mud for toxic metals removal the case of nickel. J Chem Technol 58:95–101

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Alumina plant, Muri for providing logistic support in sample collection and to Dr. C. Sinha of Central Glass and Ceramics Research Institute, Jadavpur for extending support in some analytical work.

Author information

Authors and Affiliations

Authors

Contributions

Authors have equal contribution.

Corresponding author

Correspondence to A. K. Paul.

Ethics declarations

Conflicts of interest

The Author(s) declare(s) that there is no conflict of interest.

Consent for publication

Both the authors gave consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Paul, A.K. Evaluation of physio-biochemical potentials of alkaliphilic bacterial diversity in bauxite processing residues of diverse restoration history. Environmental Sustainability 4, 155–169 (2021). https://doi.org/10.1007/s42398-020-00152-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-020-00152-8

Keywords

Navigation