Skip to main content
Log in

Relative consequences of interaction among Meloidogyne incognita, Fusarium oxysporum and tomato leaf curl Palampur virus on disease severity and growth of muskmelon

  • Research Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Muskmelon is an important cucurbitaceous crop grown during summers in Punjab. The crop suffers economic losses due to its vulnerability towards root knot nematodes (RKNs), Fusarium wilt and Tomato leaf curl palampur virus (ToLCPaV). Since in the field, muskmelon crop is exposed to all these three pathogens, the study was planned to investigate their effect on each other as well on muskmelon crop when inoculated individually and in different sequential combinations. Total thirteen treatments i.e. RKN alone, RKN + (ToLCPaV 10 days after, RKN + (Fusarium 10 days after), (RKN + Fusarium) + ToLCPaV 10 days after, RKN + Fusarium + ToLCPaV simultaneous inoculation, Fusarium alone, Fusarium + (RKN 10 days after), Fusarium + (ToLCPaV 10 days after), ToLCPaV alone, ToLCPaV + (Fusarium 10 days after), ToLCPaV + (RKN 10 days after), ToLCPaV + (RKN + Fusarium 10 days after) and Control were evaluated in a pot experiment for two consecutive seasons. The results revealed that, maximum reduction in growth parameters was recorded where all the three pathogens were inoculated simultaneously. Root galling index was more severe in treatments with prior inoculation of RKN (T2 4.5 and 4.28; T3 4.41 and 4.42) or with simultaneously inoculation of RKN with other pathogen (T5 4.56 and 4.50) in comparison to treatments where RKN was inoculated 10 days after other pathogen (T7 3.0 and 2.67; T11 3.11 and 2.06; T12 2.83 and 2.0) in both the years. Fusarium wilt was more severe, where F. oxysporum f. sp. melonis was inoculated along with M. incognita either simultaneously or in sequence (prior or latter) as compared to F. oxysporum alone. ToLCPaV severity was maximum (4.3 and 4.5) during simultaneous inoculation of all the three pathogens followed by virus alone (4.1 and 4.3) compared to virus inoculated 10 days after nematode (2.8 and 2.3) or virus inoculated 10 days after fusarium (2.3 and 3.0) during both the years, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd-El-Fattah AI, Abd-El-Khair H, El-Nagdi MA (2012) Interaction of Fusarium solani and Meloidogyne incognita on sugar beet and their control using Trichoderma viride. J Appl Sci Res 8:3166–3175

    CAS  Google Scholar 

  • Abdel-Momen SM, Starr JL (1998) Meloidogyne javanicaRhizoctonia solani disease complex of peanut. Fundam Appl Nematol 21:611–616

    Google Scholar 

  • Alam MM, Samad A, Anver S (1990) Interaction between Tomato mosaic virus and Meloidogyne incognita. Nematol Mediterr 18:131–133

    Google Scholar 

  • Ali SS (1989) Influence of ‘Katte’ mosaic virus of cardamom on the population of Meloidogyne incognita. Nematol Mediterr 17:121–122

    Google Scholar 

  • Anonymous (2020) Horticultural statistics at a glance 2017. Government of India, pp 206–207

    Google Scholar 

  • Anonymous (2020) Package of practices for cultivation of vegetables. Punjab Agricultural University, Ludhiana, pp 1–2

    Google Scholar 

  • Beute MK, Lockwood JL (1968) Mechanism of increased root rot in virus infected peas. Phytopathology 58:1643–1651

    CAS  Google Scholar 

  • Campbell AI (1969) The effect of some apple viruses on the susceptibility of two clonal rootstocks to collar rot caused by Phytophthora cactorum. J Hortic Sci 44:69–73. https://doi.org/10.1080/00221589.1969.11514286

    Article  Google Scholar 

  • Chen T, Hiroko T, Chaudhari A, Inose F, Lord M, Tanaka S, Chant J, Futija A (2000) Multigenerational cortical inheritance of the Rax 2 protein in orienting polarity and division in yeast. Science 290:1975–1978. https://doi.org/10.1126/science.290.5498.1975

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297. https://doi.org/10.1007/s12088-007-0054-2

    Article  CAS  PubMed  Google Scholar 

  • Chovatiya KP, Patel BN, Patel HR (2005) Studies on interaction between brinjal mosaic virus and root-knot nematode on brinjal. Indian J Nematol 35:148–150

    Google Scholar 

  • Dhakal M (2018) Identification, characterization and management of major virus(es) associated with cucurbits in Punjab. Ph.D. Dissertation. Punjab Agricultural University, Ludhiana, India

  • Evans K (1987) The interaction of potato cyst nematodes and Verticillium dahliae on early and maincrop potato cultivars. Ann Appl Biol 110:329–339. https://doi.org/10.1111/j.1744-7348.1987.tb03263.x

    Article  Google Scholar 

  • Francl LJ, Wheeler TA (1993) Interaction of plant parasitic nematodes with wilt-inducing fungi. In: Khan MW (ed) Nematode interactions. British Publishing House, London, pp 79–103

    Chapter  Google Scholar 

  • Francl LJ, Rowe RC, Riedel RM, Maddan LV (1988) Effects of three soil types on potato early dying disease and associated yield reduction. Phytopathology 78:159–166

    Article  Google Scholar 

  • Gray FA, Griffin GD, Johnson DA, Eckert JW, Kazimir JE (1990) Interrelationships between Meloidogyne hapla and Phytophthora megasperma f. sp. medicaginis in seedling damping-off and root infection of alfalfa. Phytopathology 80:228–232. https://doi.org/10.1094/Phyto-80-228

    Article  Google Scholar 

  • Harpaz I, Bar-Joseph M, Sela I (1969) Inhibition of tobacco mosaic virus infectivity by the fungus Thielaviopsis basieola (Berk.andBr.) Ferr. Ann Appl Biol 64:57–64. https://doi.org/10.1111/j.1744-7348.1969.tb02855.x

    Article  CAS  PubMed  Google Scholar 

  • Hartman K, Sasser J (1985) Identification of Meloidogyne species on the basis of differential host test and perineal-pattern morphology. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne. Methodology, vol 2. North Carolina State University Graphics, Raleigh, pp 69–77

    Google Scholar 

  • Hasan A (1988) Interaction of Pratylenchus coffeae and Pythium aphanidermatum and/or Rhizoctonia solani on chrysanthemum. J Phytopathol 123:227–232. https://doi.org/10.1111/j.1439-0434.1988.tb04472.x

    Article  Google Scholar 

  • Hasan A (1989) Efficacy of certain non-fumigant nematicides on the control of pigeonpea wilt involving Heterodera cajani and Fusarium udum. J Phytopathol 126:335–342. https://doi.org/10.1111/j.1439-0434.1989.tb04496.x

    Article  CAS  Google Scholar 

  • Haseeb A, Amin A, Sharma A (2007) Disease complex in Pisum sativum involving Meloidogyne incognita and Fusarium oxysporum f.sp. pisi. Ann Plant Prot Sci 15:189–194

    Google Scholar 

  • Iheukwumere CC, Dashiell KE, Mutsaers HJW (2008) Effects of single and combined infection of Soybean mosaic virus and Meloidogyne incognita on soybean and replication and pathogenicity of both pathogens. Nematol Mediterr 36:25–30

    Google Scholar 

  • Ismail W, Johri JK, Zaidi AA, Singh BP (1979) Influence of root-knot nematode, tobacco mosaic virus and complex on the growth and carbohydrates of Solanum khasianum Clarke. Indian J Exp Biol 17:1266–1267

    CAS  Google Scholar 

  • Jones MGK (1981) Host cell responses to endoparasitic attack: structure and function of giant cells and syncytia. Ann Appl Biol 97:353–372. https://doi.org/10.1111/j.1744-7348.1981.tb05122.x

    Article  CAS  Google Scholar 

  • Kassie YG, Ebrahim AS, Mohamed MY (2020) Interaction effect between Meloidogyne incognita and Fusarium oxysporum f. sp. lycospersici on selected tomato (Solanum lycopersicum L.) genotypes. Afr J Agric Res 15:330–342. https://doi.org/10.5897/AJAR2019.14441

    Article  CAS  Google Scholar 

  • Katsantonis D, Hillocks RJ, Gowen S (2003) Comparative effect of root-knot nematode on severity of Verticillium and Fusarium wilt in cotton. Phytoparastica 31:154–162. https://doi.org/10.1007/BF02980785

    Article  Google Scholar 

  • Kaur M (2005) Etiology and management of muskmelon wilt. Ph.D. Dissertation. Punjab Agricultural University, Ludhiana, India

  • Kumar B (2008) Studies on root-knot and wilt complex in Coleus forskohlii (Wild.) Briq. caused by Meloidogyne incognita (Kofoid and White) Chitwood and Fusarium chlamydosporum (Frag. and Cif.). M.Sc. Thesis. University of Agricultural Sciences, Dharwad, India

  • Lamari L, Bernier CC (1989) Toxin of Pyrenophora tritici-repentis: host specificity, significance in disease and inheritance of host reaction. Phytopathology 79:740–744. https://doi.org/10.1094/Phyto-79-740

    Article  CAS  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, Hoboken, pp 212–218

    Book  Google Scholar 

  • Mai WF, Abawi GS (1987) Interaction among root-knot nematodes and Fusarium wilt fungi on host plants. Annu Rev Phytopathol 25:317–338. https://doi.org/10.1146/annurev.py.25.090187.001533

    Article  Google Scholar 

  • Mani A, Sethi CL (1987) Interaction of root-knot nematode Meloidogyne incognita with Fusarium oxysporium f.sp. ciceri and Fusarium solani in chickpea. Indian J Nematol 17:1–6

    Google Scholar 

  • McLaughlin MR, Windham GL, Heagle AS (1993) Response of Trifolium repens clones to infection by Meloidogyne incognita and Peanut stunt virus. J Nematol 25:869–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • McLean KS, Lawrence GW (1993) Interrelationship of Heterodera glycines and Fusarium solani in sudden-death syndrome of soybean. J Nematol 25:434–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meena P, Chandrawat BS, Ahir RR, Maurya S, Lakhran L, Prajapati S, Kumawat CK (2021) Effect of Fursarium oxysporum f. sp. lycospersici and Meloidogyne incognita interaction on wilt disease incidence in tomato. Int J Chem Stud 9:2621–2624

    Article  Google Scholar 

  • Meyer SLF, Huettel RN, Liu XZ, Humber RA, Juba J, Nitao JK (2004) Activity of fungal culture filtrates against soyabean cyst nematode and root-knot nematode egg hatch and juvenile paralysis. Nematology 6:23–32. https://doi.org/10.1163/156854104323072883

    Article  Google Scholar 

  • Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification. Pennsylvania State University, University Park, pp 37–45

    Google Scholar 

  • Orion D, Netzer D (1981) Suppressive effects of the root-knot nematode on Fusarium wilt of muskmelons. Revue de Nématologie 4:65–70

    Google Scholar 

  • Orion D, Levy Y, Israeli Y, Fischer E (1999) Scanning electron microscope observations on spiral nematode (Helicotylenchus multicinctus) infested banana roots. Nematropica 29:179–183

    Google Scholar 

  • Palti J (1967) The Fusarium diseases of cucurbits in Israel. Ph.D. Dissertation. The Hebrew University, Jerusalem, Israel

  • Patel BA, Patel DJ, Patel RG (2000) Interaction between Meloidogyne incognita and wilt inducing fungus, Fusarium oxysporum f.sp. ciceri on chickpea cv. Dahod yellow. Indian J Nematol 30:133–135

    Google Scholar 

  • Rao VK, Krishnappa K (1994) Interaction between Meloidogyne incognita and Fusarium oxysporum f. sp. ciceri at different inoculum levels on chickpea. Indian J Nematol 24:112–115

    Google Scholar 

  • Safiuddin SS (2012) Interactive effect of root-knot nematode, Meloidogyne incognita and root-rot fungus, Rhizoctonia solani on okra (Abelmoschus esculentus L. Arch Phytopathol Plant Prot 45:660–666. https://doi.org/10.1080/03235408.2011.591087

    Article  Google Scholar 

  • Senthamarai M, Poornima, Subramanian S (2006) Nematode-fungal disease complex involving Melodogyne incognita and Macrophomina phaseolina on Coleus forskohlii Briq. Indian J Nematol 36:161–164

    Google Scholar 

  • Shokoohi E, Kheiri A, Etebarian HR, Roostaei (2004) Interactions between root-knot nematode Meloidogyne javanica and Fusarium wilt disease, Fusarium oxysporum f.sp. melonis in different varieties of melon. Commun Agric Appl Biol Sci 69:387–391

    CAS  PubMed  Google Scholar 

  • Sikora RA, Fernandez E (2005) Nematode parasites of vegetables. In: Luc MR, Sikora A, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI publishing, Egham, pp 319–392

    Chapter  Google Scholar 

  • Singh G (2019) Genetic diversity and pathogenicity of Fusarium oxysporum f.sp. melonis in Punjab. M.Sc. Thesis. Punjab Agricultural University, Ludhiana, India

  • Singh SK, Khurma RK (2007) Susceptibility of six tomato cultivars to the root-knot nematode, Meloidogyne incognita. South Pac J Nat Appl Sci 25:73–77. https://doi.org/10.1071/SP07013

    Article  Google Scholar 

  • Taylor AL, Sasser JN (1978) Biology, identification and control of root-knot nematodes Meloidogyne spp. North Carolina State University, Raleigh, p 111

    Google Scholar 

  • Udo IA, Ugwuoke KI, Ukeh DA (2008) Antagonistic effect of Meloidogyne incognitaand M. javanica on Pepper veinal mottle virus (PVMV) (Genus: Potyvirus) infecting Nigerian Pepper (Capsicum sp.) lines. Agric J 3:31–35

    Google Scholar 

  • Van Gundy SD, Kirkpatrick JD, Golden J (1977) The nature and role of metabolic leakage from root-knot nematode galls and infection by Rhizoctonia solani. J Nematol 9:113–121

    PubMed  PubMed Central  Google Scholar 

  • Varshney S, Pandey RC, Panday RK, Dwivedi BK, Singh V (2005) Interaction between mungbean yellow mosaic virus and root-knot nematode on growth of mungbean plants. Pak J Nematol 23:93–98

    Google Scholar 

  • Wang C, Roberts PA (2006) A Fusarium wilt resistance gene in Gossypium barbadense and its effect on root-knot nematode-wilt disease complex. Phytopathology 96:727–734. https://doi.org/10.1094/PHYTO-96-0727

    Article  CAS  PubMed  Google Scholar 

  • Youssef MMA, El-Nagdi WMA, Ahmed AA (2011) Interaction of Cucumber mosaic virus with the root-knot nematode, Meloidogyne incognita, and effects of certain medicinal and aromatic plants on infected cucumbers. Nematol Mediterr 39:73–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhjeet Kaur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhami, D.S., Kaur, S., Sharma, A. et al. Relative consequences of interaction among Meloidogyne incognita, Fusarium oxysporum and tomato leaf curl Palampur virus on disease severity and growth of muskmelon. Indian Phytopathology 75, 767–779 (2022). https://doi.org/10.1007/s42360-022-00483-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-022-00483-y

Keywords

Navigation