Skip to main content
Log in

Effects of Pseudomonas putida and Rhizophagus irregularis alone and in combination on growth, chlorophyll, carotenoid content and disease complex of carrot

  • Research Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Effects of Pseudomonas putida and Rhizophagus irregularis alone and in combination were observed on Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot (Daucus carota). Rhizoctonia solani caused a higher reduction in plant growth, chlorophyll and carotenoid content followed by A. dauci and M. incognita. Use of P. putida and R. irregularis alone and in combination caused a significant increase in plant growth, chlorophyll, carotenoid and reduced disease indices, galling and nematode multiplication. Application of P. putida caused a higher increase in plant growth, chlorophyll and carotenoid and reduced disease indices, galling and nematode multiplication greater than R. irregularis. Application of P. putida plus R. irregularis was best for the management of M. incognita, A. dauci and R. solani disease complex. Root colonization of R. irregularis/P. putida was high when alone but colonisation by both was increased when inoculated together. M. incognita, A. dauci and R. solani reduced root colonization caused by P. putida and R. irregularis. Disease indices were rated on 1–5 scale. Leaf blight and crown rot indices were nearly 3 when A. dauci and R. solani were inoculated respectively. Disease indices were nearly 5 when pathogens under study were inoculated in combination of 2 or 3. Application of P. putida or R. irregularis with A. dauci or R. solani reduced indices to nearly 2 while both biocontrol agents together reduced indices to nearly 1. In other treatments, disease indices were 2–4 out of 5. The principal components analysis showed significant correlations among various studied attributes with 82.10% overall data variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad L, Siddiqui ZA (2019) Effects of different inoculum levels of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani on the growth, chlorophyll and carotenoid and disease progression of carrot (Daucus carota L.). Acta Phytopathol Entomol Hung 54(2):211–220

    Article  CAS  Google Scholar 

  • Ahmad L, Siddiqui ZA, Abdallah EF (2019) Effects of interaction of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani on the growth, chlorophyll, carotenoid and proline contents of carrot in three types of soil. Acta Agric Scand B 69(4):324–331

    CAS  Google Scholar 

  • Akkopru A, Demir S (2005) Biocontrol of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550

    Article  Google Scholar 

  • Bagyaraj DJ, Manjunath A, Reddy DDR (1979) Interaction of vesicular arbuscular mycorrhizas with root knot nematodes in tomato. Plant Soil 51:397–403

    Article  Google Scholar 

  • Berova M, Stoeva N, Zlatev Z, Stoilova T, Chavdarov P (2007) Physiological changes in bean (Phaseolus vulgaris L.) leaves, infected by the most important bean disease. J Cent Eur Agric 8:57–62

    Google Scholar 

  • Bødker L, Kjøller R, Rosendahl S (1998) Effect of phosphorus and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8:169–174

    Article  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi from ecology to application. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01270

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui M, Nobel PS (1992) Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol 122:643–649

    Article  CAS  Google Scholar 

  • Demir S, Akkopru A (2005) Use of arbuscular mycorrhizal fungi for biocontrol of soilborne fungal plant pathogens. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. Howarth Press, New York, pp 17–37

    Google Scholar 

  • Dreosti IE (1993) Vitamins A, C, E and beta-carotene as protective factors for some cancers. Asia Pac J Clin Nutr 2:5–21

    Google Scholar 

  • Duponnois R (2006) Bacteria helping mycorrhiza development. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 297–310

    Chapter  Google Scholar 

  • Fassuliotis G (1970) Resistance of Cucumis spp. to the root-knot nematode Meloidogyne incognita acrita. J Nematol 2:174–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36. https://doi.org/10.1111/j.1469-8137.2007.02191.x

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  CAS  PubMed  Google Scholar 

  • Gerdemann JW, Nicholson TH (1963) Spore and mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:498–500

    Article  Google Scholar 

  • Grisham MP, Anderson NA (1983) Pathogenicity and host specificity of Rhizoctonia solani isolated from carrots. Phytopathology 73:1564–1569

    Article  Google Scholar 

  • Gugino BK, Abawi GS, Ludwig JW (2006) Damage and management of Meloidogyne hapla using oxamyl on carrot in New York. J Nematol 38:483–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hart MM, Forsythe JA (2012) Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Sci Hortic 148:206–214. https://doi.org/10.1016/j.scienta.2012.09.018

    Article  CAS  Google Scholar 

  • Hepper CM, Mosse B (1980) Vesicular-arbuscular mycorrhiza in root organ cultures. In: Ingram DS, Helgeson JP (eds) Tissue culture methods for plant pathologists. Blackwell Scientific Publications, Oxford, pp 161–171

    Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146. https://doi.org/10.1016/j.phytochem.2006.09.023

    Article  CAS  PubMed  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Siddiqui ZA (2019) Potential of Pseudomonas putida, Bacillus subtilis, and their mixture on the management of Meloidogyne incognita, Pectobacterium betavasculorum, and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.). Egypt J Biol Pest Control 29:1–14. https://doi.org/10.1186/s41938-019-0174-0

    Article  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207. https://doi.org/10.1016/S0045-6535(99)00412-9

    Article  CAS  PubMed  Google Scholar 

  • Koske R, Tessier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Am Newsl 34:59

    Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Bethelenfalvay GJ, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St Paul, pp 1–26

    Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    Article  CAS  Google Scholar 

  • Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can J Bot 41(7):1053–1062

    Article  CAS  Google Scholar 

  • Manasfi Y, Cannesan MA, Riah W, Bressan M, Laval K, Driouich A, Vicré M, Gattin IT (2018) Potential of combined biological control agents to cope with Phytophthora parasitica, a major pathogen of Choisya ternata. Eur J Plant Pathol 152:1011–1025

    Article  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51(3):326–335

    Article  PubMed  Google Scholar 

  • Nesha R, Siddiqui ZA (2013) Interactions of Pectobacterium carotovorum pv. carotovorum, Xanthomonas campestris pv. carotae and Meloidogyne javanica on the disease complex of carrot. Int J Veg Sci 19:403–411

    Article  Google Scholar 

  • Oliver C, Hernández I, Caminal M, Lara JM, Fernàndez C (2019) Pseudomonas putida strain B2017 produced as technical grade active ingredient controls fungal and bacterial crop diseases. Biocontrol Sci Technol 29(11):1053–1068

    Article  Google Scholar 

  • Pagano MC (2016) Recent advances on mycorrhizal fungi. Springer, Cham. https://doi.org/10.1007/978-3-319-24355-9_1 

    Book  Google Scholar 

  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90

    Article  PubMed  Google Scholar 

  • Porter WM (1979) “The most probable number” method of enumerating infective propagules of vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Google Scholar 

  • Pryor BM, Strandberg JO (2001) Alternaria leaf blight of carrot. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. APS Press, St. Paul

    Google Scholar 

  • Reddy PP (1974) Studies on the action of amino acids on the root-knot nematode Meloidogyne incognita. Ph.D. Thesis, University of Agriculture Sciences Banglore, India.

  • Riker AJ, Riker RS (1936) Introduction to research on plant diseases. John’s Swift Co., New York

  • Sasser JN, Carter CC (1985) An advanced treatise on Meloidogyne, vol 1. North Carolina State University Graphics, Raleigh

    Google Scholar 

  • Sharma PD (2001) Microbiology. Rastogi and Company, Meerut

    Google Scholar 

  • Shi J, Liu A, Li X, Chen W (2013) Control of Phytophthora nicotianae disease, induction of defense responses and genes expression of papaya fruits treated with Pseudomonas putida MGP1. J Sci Food Agric 93(3):568–574

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2008) Effects of fertilizers, AM fungus and plant growth promoting rhizobacterium on the growth of tomato and on the reproduction of root-knot nematode Meloidogyne incognita. J Plant Interact 3:263–271

    Article  Google Scholar 

  • Siddiqui ZA, Futai K (2009) Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plant-growth-promoting rhizobacteria and cattle manure. Pest Manag Sci 65:943–948

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Mahmood I (1995a) Role of plant symbionts in nematode management, a review. Bioresour Technol 54:217–226

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1995b) Some observations on the management of the wilt disease complex of pigeonpea by treatment with vesicular-arbuscular fungus and biocontrol agents for nematodes. Bioresour Technol 54:227–230

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Pichtel J (2008) Mycorrhizae: an overview. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 1–35 

    Chapter  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York

    Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156(3):1050–1057. https://doi.org/10.1104/pp.111.174581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneath PH, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman and Company, San Francisco, p 573

    Google Scholar 

  • Souza T (2015) Handbook of arbuscular mycorrhizal fungi. Springer, Berlin. https://doi.org/10.1007/978-3-319-24850-9

    Book  Google Scholar 

  • Speizer FE, Colditz GA, Hunter DJ, Rosner B, Hennekens C (1999) Prospective study of smoking, antioxidant intake and lung cancer in middle aged women. Cancer Causes Control 10:475–482

    Article  CAS  PubMed  Google Scholar 

  • Suresh CK (1980) Interaction between vesicular arbuscular mycorrhizae and root-knot nematodes in tomato. M.Sc. (Agric.) Thesis, University of Agriculture Sciences, Banglore, India.

  • Takács T, Cseresnyés I, Kovács R, Parádi I, Kelemen B, Szili-Kovács T, Füzy A (2018) Symbiotic effectivity of dual and tripartite associations on soybean (Glycine max L. Merr.) cultivars inoculated with Bradyrhizobium japonicum and AM Fungi. Front Plant Sci 9:1–14

    Article  Google Scholar 

  • Tariq M, Yasmin S, Hafeez FY (2010) Biological control of potato black scurf by rhizosphere associated bacteria. Braz J Microbiol 41(2):439–451

    Article  PubMed  PubMed Central  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frey NF, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, Clemente HS, Shapiro H, van Tuinen D, Becard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young JP, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA 110(50):20117–20122. https://doi.org/10.1073/pnas.1313452110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turrini A, Avio L, Giovannetti M, Agnolucci M (2018) Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of translational research. Front Plant Sci 9:10–13

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

First Author is also thankful to Aligarh Muslim University, Aligarh, India and University Grants Commission, New Delhi, India for providing University Fellowship. Authors did not receive any special funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaki Anwar Siddiqui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest (financial or non-financial).

Ethical approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahamad, L., Siddiqui, Z.A. Effects of Pseudomonas putida and Rhizophagus irregularis alone and in combination on growth, chlorophyll, carotenoid content and disease complex of carrot. Indian Phytopathology 74, 763–773 (2021). https://doi.org/10.1007/s42360-021-00346-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-021-00346-y

Keywords

Navigation