Skip to main content
Log in

Potential Analysis of Double Gate Vertical TFET Using 2-D Modeling for Low Power Application

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The present paper analyzes the 2-dimensional surface potential model designed using Double Gate Vertical TFET (DGV-TFET). The proposed model using the Matlab tool possesses an inherited trait of TFET, namely the dual modulation effect. The dual modulation effect describes a control over the surface potential of biasing voltages utilized to compute a tunneling depletion width value upon source and drain junctions. Hence, the device tunneling current exploits the potential model to derive the current model. The parabolic approximation methods are utilized to evaluate 2-D Poisson equations for proper boundary conditions. The present paper analyzes surface potential outline dependence upon different device metrics by changing device materials, gate/drain-source potential, gate oxide permittivity, and gate electrode work-function. Resultingly, the channel’s surface potential is derived considering an accurate change in gate and drain biases. Thus, the proposed model efficiency is confirmed by describing results analytically in favour of simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Bergveld, Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 88(1), 1–20 (2003). https://doi.org/10.1016/S0925-4005(02)00301-5

    Article  CAS  Google Scholar 

  2. K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007). https://doi.org/10.1109/.TED.2007.899389

    Article  CAS  Google Scholar 

  3. T.S. Arun Samuel, N.B. Balamurugan, S. Sibitha, R. Saranya, D. Vanisri, Analytical modeling and simulation of dual material gate tunnel field effect transistors. J. Electr. Eng. Technol. 8(6), 1481–1486 (2013). https://doi.org/10.5370/JEET.2013.8.6.1481

    Article  Google Scholar 

  4. G. Wadhwa, B. Raj, Label free detection of biomolecules using charge-plasma-based gate underlap dielectric modulated junctionless TFET. J. Electron. Mater. 47(8), 4883–4893 (2018)

    Article  Google Scholar 

  5. K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-$\kappa $ gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007). https://doi.org/10.1109/TED.2007.899389

    Article  CAS  Google Scholar 

  6. S. Singh, S.K. Vishvakarma, B. Raj, Analytical modeling of split-gate junction-less transistor for a biosensor application. Sens Bio Sens 18, 31–36 (2018). https://doi.org/10.1016/j.sbsr.2018.02.001

    Article  Google Scholar 

  7. S. Badgujjar et al., Design and analysis of dual source vertical tunnel field effect transistor for high performance. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00154-2

    Article  Google Scholar 

  8. M.J. Kumar, S. Janardhanan, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60, 3285–3290 (2013). https://doi.org/10.1109/TED.2013.2276888

    Article  CAS  Google Scholar 

  9. R. Vishnoi, M.J. Kumar, A pseudo-2-D-analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. ElectronDevices 61(7), 2264–2270 (2014)

    Article  Google Scholar 

  10. A. Zhan, J. Mei, L. Zhang, H. He, J. He, and M. Chan, Numerical study on dual material gate nanowire tunnel field-effect transistor, in Proceedings of the IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), 2012, pp. 1–5

  11. H. Lou et al., A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron Devices 59(7), 1829–1836 (2012)

    Article  CAS  Google Scholar 

  12. S. Kumar, B. Raj, Simulations and modeling of TFET for low power design, in Handbook of Research on Computational Simulation and Modeling in Engineering. ed. by F. Miranda, C. Abreu (IGI Global, Pennsylvania, 2015), pp.650–679. https://doi.org/10.4018/978-1-4666-8823-0.ch021

    Chapter  Google Scholar 

  13. G. Wadhwa, B. Raj, Surface potential modeling and simulation analysis of dopingless TFET biosensor. SILICON 14, 1–10 (2021)

    Google Scholar 

  14. G. Jain, R.S. Sawhney, R. Kumar, G. Wadhwa, Analytical modeling analysis and simulation study of dual material gate underlap dopingless TFET. Superlattices Microstruct. 153, 106866 (2021)

    Article  CAS  Google Scholar 

  15. T.S. Arun Samuel, N.B. Balamurugan, S. Bhuvaneswari, D. Sharmila, K. Padmapriya, Analytical modeling and simulation of single-gate SOI TFET for low-power applications. Int. J. Electron. 101(6), 779–788 (2014). https://doi.org/10.1080/00207217.2013.796544

    Article  CAS  Google Scholar 

  16. G. Wadhwa, B. Raj, An analytical modeling of charge plasma based tunnel field effect transistor with impacts of gate underlap region. Superlattices Microstruct. 142, 106512 (2020)

    Article  CAS  Google Scholar 

  17. J. Madan, R. Pandey, R. Sharma, R. Chaujar, Impact of metal silicide source electrode on polarity gate induced source in junctionless TFET. Appl. Phys. A 125(9), 1–7 (2019)

    Article  CAS  Google Scholar 

  18. C. Wu et al., An analytical surface potential model accounting for the dual-modulation effects in tunnel FETs. IEEE Trans. Electron Devices 61(8), 2690–2696 (2014). https://doi.org/10.1109/TED.2014.2329372

    Article  Google Scholar 

  19. Silvaco, Version 5.15.32.R. (2009). http://www.silvaco.com

  20. J. Madan, M. Dassi, R. Pandey, R. Chaujar, R. Sharma, Numerical analysis of Mg2Si/Si heterojunction DG-TFET for low power/high performance applications: Impact of non-idealities. Superlattices Microstruct. 139, 106397 (2020)

    Article  CAS  Google Scholar 

  21. L. Zhang, C. Ma, J. He, X. Lin, M. Chan, Analytical solution of subthreshold channel potential of gate underlap cylindrical gate-all around MOSFET. Solid State Electron. 54(8), 806–808 (2010). https://doi.org/10.1016/j.sse.2010.03.020

    Article  CAS  Google Scholar 

  22. S.C. Lin, J.B. Kuo, Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron Devices 50(12), 2559–2564 (2003). https://doi.org/10.1109/TED.2003.816910

    Article  CAS  Google Scholar 

  23. M. Gholizadeh, S.E. Hosseini, A 2-D analytical model for double gate tunnel FETs. IEEE Trans. Electron Devices 61(5), 1494–1500 (2014). https://doi.org/10.1109/TED.2014.2313037

    Article  Google Scholar 

  24. R. Vishnoi, M. Kumar, Compact analytical drain current model of gate-all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61(7), 2599–2603 (2014). https://doi.org/10.1109/.TED.2014.2322762

    Article  Google Scholar 

  25. C. Wu, R. Huang, Q. Huang, C. Wang, J. Wang, Y. Wang, An analytical surface potential model accounting for the dual-modulation effects in tunnel FETs. IEEE Trans. Electron Devices 61(8), 2690–2696 (2014). https://doi.org/10.1109/TED.2014.2329372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Wadhwa.

Ethics declarations

Conflict of interest

The authors confirm that this manuscript has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Verma, A.K., Patle, A. et al. Potential Analysis of Double Gate Vertical TFET Using 2-D Modeling for Low Power Application. Trans. Electr. Electron. Mater. 24, 314–322 (2023). https://doi.org/10.1007/s42341-023-00449-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00449-5

Keywords

Navigation