Skip to main content
Log in

Structural, Impedance and Modulus Studies of Effect of Magnesium (Mg) Substitution on Spinel Li4Ti5O12 Anode Materials

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

This research article aims at reporting the influence of magnesium by studying the structural, electrical impedance and modulus properties of the Mg substituted Li4Ti5O12. These studies are useful for the electrochemical properties. The XRD reveals that the structure of all the Mg substituted materials belongs to the cubic spinel group having Fd-3m space symmetry. SEM images display the structural, morphological properties with the average size of grains falling in the vicinity of 1 μm. The electrical impedance of Li4−xMgxTi5O12 materials was analyzed at frequencies between 20 Hz and 1 MHz and in the 30–120 °C range of temperature by employing the complex impedance spectroscopy (CIS) method. The modulus formalism is also a suitable tool to understand the dynamical characteristics of electrical transport phenomena. The complex electric modulus spectrum signifies quantifying the allocation of ion energies or configurations in the lattice. Also, it portrays the electrical relaxation of ion-conducting lattices as a feature of materials at a minuscule level. The obtained results of substitution of Mg in Li4Ti5O12 anode materials improve the potential applications of conductivity and charge/discharge performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Placke, R. Kloepsch, S. Duhnen, M. Winter, J. Solid State Electrochem. 21, 1939–1964 (2017)

    Article  CAS  Google Scholar 

  2. K. Nakahara, R. Nakajima, T. Matsushima, H. Majima, J. Power Sources 117, 131–136 (2003)

    Article  CAS  Google Scholar 

  3. A.Y. Shenouda, K.R. Murali, J. Power Sources 176, 332–339 (2008)

    Article  CAS  Google Scholar 

  4. B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928–935 (2011)

    Article  CAS  Google Scholar 

  5. K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, Science 264, 556–558 (1994)

  6. J.M. Tarascon, M. Armand, Nature 414, 359–367 (2001)

    Article  CAS  Google Scholar 

  7. S. Iwamura, H. Nishihara, Y. Ono, H. Morito, H. Yamane, H. Nara, T. Osaka, T. Kyotani, Sci. Rep. 5, 8085 (2015)

    Article  CAS  Google Scholar 

  8. C.P. Sandhya, B. John, C. Gouri, Ionics 20, 601–620 (2014)

    Article  CAS  Google Scholar 

  9. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364–5457 (2013)

    Article  CAS  Google Scholar 

  10. T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 142, 1431–1435 (1995)

    Article  CAS  Google Scholar 

  11. S. Schamer, W. Weppner, P.S. Beurmann, J. Electrochem. Soc. 146, 857–861 (1999)

    Article  Google Scholar 

  12. C.C. Yang, H.C. Hu, S.J. Lin, W.C. Chien, J. Power Sources 258, 424–433 (2014)

    Article  CAS  Google Scholar 

  13. M.D. Ji, Y.L. Xu, Z. Zhao, H. Zhang, D. Liu, C.J. Zhao, X.Z. Qian, C.H. Zhao, J. Power Sources 263, 296–303 (2014)

    Article  CAS  Google Scholar 

  14. C.C. Chen, Y.N. Huang, C.H. An, H. Zhang, Y.J. Wang, L.F. Jiao, H.T. Yuan, Chem. Sus. Chem. 8, 114–122 (2015)

    Article  CAS  Google Scholar 

  15. C.F. Lin, B. Ding, Y.L. Xin, F.Q. Cheng, M.O. Lai, L. Lu, H.H. Zhou, J. Power Sources 248, 1034–1041 (2014)

    Article  CAS  Google Scholar 

  16. Y.X. Yan, H.S. Nan, Electrochemistry 6, 350–355 (2000)

    Google Scholar 

  17. T.F. Yi, S.Y. Yang, Y. Xie, J. Mater. Chem. A 3, 5750–5777 (2015)

    Article  CAS  Google Scholar 

  18. C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher, M.M. Thackeray, J. Electrochem. Soc. 148, A102–A104 (2001)

    Article  CAS  Google Scholar 

  19. E. Pohjalainen, T. Rauhala, M. Valkeapaa, J. Kallioinen, T. Kallio, J. Phys. Chem. C 119, 2277–2283 (2015)

    Article  CAS  Google Scholar 

  20. L.F. Shen, X.G. Zhang, E. Uchaker, C.Z. Yuan, G.Z. Cao, Adv. Energy Mater. 2, 691–698 (2012)

    Article  CAS  Google Scholar 

  21. Q. Zhang, X. Li, Int. J. Electrochem. Sci. 8, 6449–6456 (2013)

    CAS  Google Scholar 

  22. B. Vikram Babu, G.T. Aregai, K.V. Babu, K. Samatha, V. Veeraiah, Chem. Sci. Trans. 6(2), 227–234 (2017)

    Google Scholar 

  23. L.A. Riley, S. Van Atta, A.S. Cavanagh, J. Power Sources 196(6), 3317–3324 (2011)

    Article  CAS  Google Scholar 

  24. J. Shuangze, J. Zhang, W. Wang, Y. Huang, Z. Feng, Z. Zhang, Z. Tang, Mater. Chem. Phys. 123, 510–515 (2010)

    Article  Google Scholar 

  25. W.N. Wei, H.Z. Chun, C.X. Mei, W.Z. Yu, Adv. Mater. Res. 779–780, 307–312 (2013)

    Google Scholar 

  26. A.S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.M. Tarascon, A.K. Shukla, Chem. Mater. 22, 2857–2863 (2010)

    Article  CAS  Google Scholar 

  27. U. Dash, S. Sahoo, P. Chaudhuri, S.K.S. Parashar, K. Parashar, J. Adv. Ceram. 3(2), 89–97 (2014)

    Article  CAS  Google Scholar 

  28. M. Kazuhiko, K. Yuichi, N. Hideyuki, J. Phys. Chem. C 118, 2992–2999 (2014)

    Article  Google Scholar 

  29. H. Mahamoud, B. Louati, F. Hlel, K. Guidara, Bull. Mater. Sci. 34, 1069–1075 (2011)

    Article  CAS  Google Scholar 

  30. M.S. Islam, C.A.J. Fisher, Chem. Soc. Rev. 43, 185–204 (2014)

    Article  CAS  Google Scholar 

  31. V.D. Nithya, S. Sharmila, K. Vediappan, C.W. Lee, L. Vasylechko, R.K. Selva, J. Appl. Electrochem. 44, 647–654 (2014)

    Article  CAS  Google Scholar 

  32. I.A. Stenina, A.B. Ilina, A.B. Yaroslavtseva, Inorg. Mater. 51(1), 62–67 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Vikram Babu or B. Sathish Mohan.

Ethics declarations

Conflicts of interest

The authors declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, B.V., Reddi, M.S., Krishna, A.R. et al. Structural, Impedance and Modulus Studies of Effect of Magnesium (Mg) Substitution on Spinel Li4Ti5O12 Anode Materials. Trans. Electr. Electron. Mater. 23, 499–508 (2022). https://doi.org/10.1007/s42341-021-00377-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00377-2

Keywords

Navigation