Skip to main content
Log in

CNTFET Based Ternary 1-Trit & 2-Trit Comparators for Low Power High-Performance Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

1-Trit and 2-Trit Ternary comparator circuits using Complementary Metal–Oxide–Semiconductor (CMOS) as well as Carbon Nanotube Field-Effect Transistor (CNTFET) is proposed and investigated for Low Power High-performance applications. The design and simulation are investigated and authenticated using Hailey Simulation Program with Integrated Circuit (HSPICE) with Predictive technology model (PTM) low power 32 nm metal gate/High-K/Strained-Si Model for CMOS and 32 nm Stanford Model for CNTFET. The CNTFET based design is compared with the CMOS design in terms of significant design aspects, specifically delay, Average Power consumption and Power delay product (PDP). A comparison is performed among CMOS and CNTFET based ternary comparator circuits which reveals that CNTFETs can lead to more efficient ternary circuits. In terms of delay and power consumption, the CNTFET based 1-Trit Ternary Comparator performs better than the CMOS based 1-Trit Ternary Comparator as the delay and Average power consumption are reduced by 89.7% and 57.3% in CNTFET type as compared to the CMOS based 1-Trit Ternary Comparator design. Similarly, in the case of the 2-Trit comparator, the CNTFET based design performs better than the CMOS-based design as the delay and Average power consumption are reduced by 88.7% and 42% in the CNTFET type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Lukasiewicz, O logice trójwartościowej, Ruch Filozoficzny (1920), 170–171

  2. S. Rani, G. Kaur, B.S. Lakha, J. Nanosci. Nanoen. App. 8(2), 20–30 (2018)

    CAS  Google Scholar 

  3. C. Vudadha, P.P. Sai, V. Sreehari, & M.B. Srinivas, M. B. Int. Symposium on Comm. and Information Technologies (ISCIT). IEEE. 942–946 (2012).

  4. A. Ray Chowdhury, K. Roy, IEEE Trans Nanotechnol, 4(2): 168–179 (2005)

  5. X.W. Wu, F.P. Prosser, IEE Proc. G-Circuits. Devices Syst. 137(1), 21–27 (1990)

    Article  Google Scholar 

  6. D. Etiemble, M. Isreal, IEEE Tran. Comp. (12): 1222–1233 (1977).

  7. R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Science 297(5582), 787–792 (2002)

    Article  CAS  Google Scholar 

  8. International Technology Roadmap for Semiconductors (ITRS). (2015) Emerging Research Device Summary.

  9. A. Singh, M. Khosla, B. Raj, IEEE 4th Global Conference on Consumer Electronics (GCCE). 552–555. IEEE (2015).

  10. A.H. Chowdhury, N. Akhter, A (Al Faisal, Proceedings of the Global Engineering, 2012), pp. 1–9

    Google Scholar 

  11. P. Chuang, D. Li, M. Sachdev, IEEE Trans. Circuits Syst. II: Exp. Br. 59(2), 108–112 (2012)

    Article  Google Scholar 

  12. V. Sridevi, T. Jayanthy, Arabian J. for Sci. Eng. 39(6), 4875–4890 (2014)

    Article  CAS  Google Scholar 

  13. A.P. Dhande, and V.T. Ingole, V.T, In Proc. Int. Conf. IEEE-Sci. Electron. Technol. Inf. Telecommunication, 17–21 (2005).

  14. A.P. Dhande, V.T, Ingole, and V.R. Ghiye, V.R, S M Medical Technology Private limited. Chap. 5 (2014).

  15. S. Rani and B. Singh, In Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET). IGI Global, 72–92 (2020)

  16. A. Srivastava, K. Venkatapathy, VLSI DESIGN. 4(1), 75–81 (1996)

    Article  Google Scholar 

  17. H. Samadi, A. Shahhoseini, F. Aghaei-liavali, Microelectron. J. 63, 41–48 (2017)

    Article  CAS  Google Scholar 

  18. G. Kanal, Digital Electronics | Electronics, Digital Electronics. chap.5 (2014).

  19. Stanford University CNFET Model. http://nanostanford.edu/models.phpwebsite.

  20. Predictive Technology Model. http://ptm.asu.edu/modelcard/LP/32nm_LP.pm.

  21. S.L. Murotiya, A. Gupta, & S. Vasishth,“Novel design of ternary magnitude comparator using cntfets,” In 2014 Annual IEEE India Conference (INDICON), pp. 1–4 (2014)

  22. C. Vudadha, P.P. Sai, V. Sreehari, & M.B. Srinivas, “CNFET based ternary magnitude comparator,” In 2012 International Symposium on Communications and Information Technologies (ISCIT), IEEE, pp. 942–946. (2012)

  23. S. Bala, M. Khosla, Design and analysis of electrostatic doped tunnel CNTFET for various process parameters variation. Superlattices Microstruct. 124, 160–167 (2018)

    Article  CAS  Google Scholar 

  24. E. Shahrom, S.A. Hosseini, A new low power multiplexer based ternary multiplier using CNTFETs. AEU-Int. J. Electron. Commun. 93, 191–207 (2018)

    Article  Google Scholar 

  25. S. Bala, M. Khosla, Design and performance analysis of low-power SRAM based on electrostatically doped tunnel CNTFETs. J. Comput. Electron. 18(3), 856–863 (2019)

    Article  CAS  Google Scholar 

  26. F. Razi, M.H. Moaiyeri, R. Rajaei, S. Mohammadi, A variation-aware ternary spin-hall assisted STT-RAM based on hybrid MTJ/GAA-CNTFET logic. IEEE Trans. Nanotechnol. 18, 598–605 (2019)

    Article  CAS  Google Scholar 

  27. K. Tamersit, Sub-10 nm junctionless carbon nanotube field-effect transistors with improved performance. AEU-Int. J. Electron. Commun. 124, 153354 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwinder Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Singh, B. & Devi, R. CNTFET Based Ternary 1-Trit & 2-Trit Comparators for Low Power High-Performance Applications. Trans. Electr. Electron. Mater. 22, 734–749 (2021). https://doi.org/10.1007/s42341-021-00292-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00292-6

Keywords

Navigation