Skip to main content
Log in

Photovoltaic Review of all Generations: Environmental Impact and Its Market Potential

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

With the technology and innovation rising at its peak, the demand for energy has increased exponentially. To cater this, researchers are persistently exploring ways to fulfil this deficit between demand and supply. One of the feasible solutions is the use of energy from renewable resources such as Solar Energy due to its abundance availability and easy accessibility. Seeing it’s trans formative potential to address growing concerns about environment, pollution and sustainable energy integration, there is an intemperate research going on in developing highly efficient Photovoltaic Cells (PVC). The PVC’s are effectuated to convert solar energy from the sunlight directly to electrical energy. Furthermore, the PVC has gone through various generations with the aim to optimise its cost/watt of delivered solar electricity and efficiency of solar cell. This paper is an effort to compare all the generations which PVC has undergone and the recent advancements in this area. The results of this research study will be fruitful for researchers working in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Damiano, G. Gatto, I. Marongiu, M. Porru, A. Serpi, Real-time control strategy of energy storage systems for renewable energy sources exploitation. IEEE Trans. Sustain. Energy 5(2), 567–576 (2014)

    Google Scholar 

  2. J. Yi, P.F. Lyon, P.J. Davison, P. Wang, P.C. Taylor, Robust scheduling scheme for energy storage to facilitate high penetration of renewables. IEEE Trans. Sustain. Energy 7(2), 797–807 (2016)

    Google Scholar 

  3. U. Wurfel, A. Cuevas, P. Wurfel, Charge carrier separation in solar cells. IEEE J. Photovolt. 5(1), 461–469 (2015)

    Google Scholar 

  4. J.C. Pla et al., Short circuit current vs cell thickness in solar cells under rear illumination: a direct evaluation of the diffusion length. J. Solid-State Electron. 44(4), 719–724 (2000)

    CAS  Google Scholar 

  5. R. Chawla, P. Singhal, A.K. Garg, Design and analysis of multi junction solar photovoltaic cell with graphene as an intermediate layer. J. Nanosci. Nanotechnol. 20(6), 3693–3702 (2020)

    CAS  Google Scholar 

  6. R. Chawla, P. Singhal, A.K. Garg, Performance comparison of Si and InGaN p-n junction Solar Cell. Int. J. Sci. Eng. Res. 8(4), 176–181 (2017)

    Google Scholar 

  7. G.L. Araújo, A. Martí, Absolute limiting efficiencies for photovoltaic energy conversion. Sol. Energ. Mater. Sol. C 33, 213–240 (1994)

    Google Scholar 

  8. J.J. Loferski, Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys. 27, 777–784 (1956)

    CAS  Google Scholar 

  9. W. Shockley, The theory of p–n junctions in semiconductors and p–n junction transistors. Bell Syst. Technol. J. 28, 435–489 (1949)

    Google Scholar 

  10. S. Ruhle et al., Tabulated values of the Shockley–Queisser limit for single junction solar cells. J. Solar Energy 130, 139–147 (2016)

    Google Scholar 

  11. M.A. Green, Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovolt. 20, 472–476 (2012)

    CAS  Google Scholar 

  12. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 47). Prog. Photovolt. 24, 3–11 (2016)

    Google Scholar 

  13. A. Richter, M. Hermle, W. Glunz, Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovol. 3, 1184–1191 (2013)

    Google Scholar 

  14. J. Mattheis, J.H. Werner, U. Rau, Finite mobility effects on the radiative efficiency limit of pn-junction solar cells’. Phys. Rev. B 77, 085203 (2008)

    Google Scholar 

  15. M.Y. Levy, C.B. Honsberg, Rapid and precise calculations of energy and particle flux for detailed-balance photovoltaic applications. J. Solid-State Electron. 50, 1400–1405 (2006)

    CAS  Google Scholar 

  16. M.A. Green, S.P. Bremner, Energy conversion approaches and materials for high-efficiency photovoltaics. J. Nat. Mater. 16, 23–34 (2016)

    Google Scholar 

  17. A.K. Shukla, K. Sudhakar, P. Baredar, Recent advancement in BIPV product technologies: a review. Energy Build. 140, 188–195 (2017). https://doi.org/10.1016/j.enbuild.2017

    Article  Google Scholar 

  18. R.M. Swanson, Approaching the 29% limit efficiency of silicon solar cells, in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, pp. 889–94 (2005)

  19. Article-“The new silicon valley – Polysilicon”. 2 February 2015. Archived from the original on 30 April 2015

  20. M.A. Green, A.W. Blakers, J. Shi, E.M. Keller, S.R. Wenham, 19.1% efficient silicon solar cell. Appl. Phys. Lett. 44(12), 1163–1164 (1984)

    CAS  Google Scholar 

  21. Crystalline Silicon PV Market by Type (Mono-Crystalline and Multi-Crystalline) and End-User (Residential and Commercial, Utility-Scale) - Global Opportunity Analysis and Industry Forecasts 2014–2022

  22. D.D. Smith, P. Cousins, S. Westerberg, R. De Jesus-Tabajonda, G. Aniero, and Y.-C. Shen, Toward the practical limits of silicon solar cells, in 40th IEEE Photovoltaic Specialists Conference, pp. 1465–1469 (2014)

  23. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version38). J. Prog. Photovolt. Res. Appl. 19(5), 84–92 (2011)

    CAS  Google Scholar 

  24. B.M. Kayes et al., 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, in 2011 37th IEEE Photovoltaic Specialists Conference (PVSC), pp. 4–8 (2011)

  25. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version 49). J. Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017)

    Google Scholar 

  26. H. Park, Y. Lee, J. Park et al., Front and back TCO research review of a-Si/c-Si heterojunction with intrinsic thin layer (HIT) solar cell. Trans. Electr. Electron. Mater. 19, 165–172 (2018)

    Google Scholar 

  27. S. Zhang, X. Pan, H. Jiao, W. Deng, J. Xu, Y. Chen, P.P. Altermatt, Z. Feng, P.J. Verlinden, 335 watt world record p-type mono-crystalline module with 20.6% efficient PERC solar cells. IEEE J. Photovoltaics (to be published)

  28. A.W. Blakers, A. Wang, A.M. Milne, J. Zhao, M.A. Green, 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363–1365 (1989)

    CAS  Google Scholar 

  29. J. Zhao, A. Wang, M.J. Keevers, M.A. Green, High efficiency PERT cells on SEH p-type Si substrates and PERT cells on SHE n-type Si substrates (2000)

  30. M.A. Green, The passivated emitter and rear cell (PERC): from conception to mass production. Sol. Energy Mater. Sol. Cells 143, 190–197 (2015)

    CAS  Google Scholar 

  31. J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulović, Pathways for solar photovoltaics. Energy Environ. Sci. 8, 1200–1219 (2015)

    CAS  Google Scholar 

  32. R.M. Geisthardt, M. Topic, J.R. Sites, Status and potential of CdTe solar-cell efficiency. IEEE J. Photovolt. 5(4), 1217–1221 (2015)

    Google Scholar 

  33. N.R. Paudel, K.A. Wieland, A.D. Compaan, Ultrathin CdS/CdTe solar cells by sputtering. Sol. Energy Mat. Sol. C 105, 109–112 (2012)

    CAS  Google Scholar 

  34. J.L. Peñaa, O. Arésa, V. Rejóna, A. Rios-Floresa, J.M. Camachoa, N. Romeob, A. Bosiob, A detailed study of the series resistance effect on CdS/CdTe solar cells with Cu/Mo back contact. Thin Solid Films 520(2), 680–683 (2011)

    Google Scholar 

  35. E. Colegrove, R. Banai, C. Blissett, C. Buurma, J. Ellsworth, M. Morley, S. Barnes et al., High-efficiency polycrystalline CdS/CdTe solar cells on buffered commercial TCO-coated glass. J. Electron. Mater. 41(10), 2833–2837 (2012)

    CAS  Google Scholar 

  36. First solar press release, First Solar builds the highest efficiency thin film PV cell on record, 5 August 2014

  37. First solar press release. First Solar achieves world record 18.6% thin film module conversion efficiency, 15 June 2015

  38. M. Topic, R. Geisthardt, J.R. Sites, Performance limits and status of ˇ single-junction solar cells with emphasis on CIGS. IEEE J. Photovolt. 5(1), 360–365 (2015)

    Google Scholar 

  39. J. Ramanujam, U.P. Singh, Copper indium gallium selenide based solar cells—a review. Energy Environ. Sci. 10(6), 1306–1319 (2017)

    CAS  Google Scholar 

  40. ZSW takes CIGS thin film cell to 22% conversion efficiency, https://www.pv-tech.org

  41. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovolt Res. Appl. 19, 894–897 (2011)

    CAS  Google Scholar 

  42. E. Wallin, U. Malm, T. Jarmar, O. Lundberg, M. Edoff, L. Stolt, World-record Cu(In, Ga)Se2-based thin-film sub-module with 17.4% efficiency. Prog. Photovolt. Res. Appl. 20, 851–854 (2012)

    CAS  Google Scholar 

  43. H. Sugimoto, High efficiency and large volume production of CIS-based modules, in 40th IEEE Photovoltaic Specialists Conference, Denver, June 2014

  44. M. Faryad, A. Lakhtakia, Enhancement of light absorption efficiency of amorphous-silicon thin-film tandem solar cell due to multiple surface-plasmon-polariton waves in the near-infrared spectral regime. J. Opt. Eng. 52(8), 087106 (2013)

    Google Scholar 

  45. L. Fang, S.J. Baik, S. Lim, S. Yoo, K.S. Lim, Amorphous Si rear Schottky junction solar cell with a LiF/Al back electrode. IEEE Trans. Electron. Devices 58(9), 3048–3052 (2011)

    CAS  Google Scholar 

  46. T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, Development of highly stable and efficient amorphous silicon based solar cells, in Proceedings of the 28th European Photovoltaic Solar Energy Conference pp. 2213–2217 (2013)

  47. H. Sai, K. Maejima, T. Matsui, T. Koida, M. Kondo, S. Nakao, Y. Takeuchi, H. Katayama, I. Yoshida, High efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 54, 08KB05 (2015)

    Google Scholar 

  48. J.S. Cashmore, M. Apolloni, A. Braga, O. Caglar, V. Cervetto, Y. Fenner, S. Goldbach-Aschemann, C. Goury, J.E. Hötzel, T. Iwahashi, J. Kalas, M. Kitamura, M. Klindworth, M. Kupich, G.F. Leu, J. Lin, M.H. Lindic, P.A. Losio, T. Mates, D. Matsunaga, B. Mereu, X.V. Nguyen, I. Psimoulis, S. Ristau, T. Roschek, A. Salabas, E.L. Salabas, I. Sinicco, Improved conversion efficiencies of thin-film silicon tandem (MICROMORPH™) photovoltaic modules. Sol. Energy Mater. Sol. Cells 144, 84–95 (2016). https://doi.org/10.1016/j.solmat.2015.08.022

    Article  CAS  Google Scholar 

  49. R. Chawla, P. Singhal, A.K. Garg, Int. J. Inf. Technol. (2017). https://doi.org/10.1007/s41870-017-0043-6

    Article  Google Scholar 

  50. B.M. Kayes, L. Zhang, R. Twist, I.K. Ding, G.S. Higashi, Flexible thin-film tandem solar cells with > 30% efficiency. IEEE J. Photovolt. 4, 729–733 (2014)

    Google Scholar 

  51. F. Meillaud, C. Battaglia et al., Latest developments of high efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design. IEEE Photovoltaics Specialist Conference (PVSC) (2011). https://doi.org/10.1109/6185923

    Article  Google Scholar 

  52. C. Becker, T. Sontheimer, S. Steffens, S. Scherf, B. Rech, Polycrystalline silicon thin films by high-rate electronbeam evaporation for photovoltaic applications—Influence of substrate texture and temperature. Energy Procedia 10, 61–65 (2011)

    CAS  Google Scholar 

  53. G. Sozzi, S. Di Napoli, R. Menozzi, B. Bissig, S. Buecheler, A.N. Tiwari, Impact of front-side point contact/passivation geometry on thin-film solar cell performance. Sol. Energy Mater. Sol. Cells 165, 94–102 (2017)

    CAS  Google Scholar 

  54. S. Moon et al., Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep. 6, 30107 (2016)

    CAS  Google Scholar 

  55. E.D. Kosten, J.H. Atwater, J. Parsons, A. Polman, H.A. Atwater, Highly efficient GaAs solar cells by limiting light emission angle. Light Sci. Appl. 2, e45 (2013)

    Google Scholar 

  56. G. Mariani, A.C. Scofield, C.-H. Hung, D.L. Huffaker, GaAs nanopillar-array solar cells employing in situ surface passivation. Nat. Commun. 4, 1497 (2013)

    Google Scholar 

  57. B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi, 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011

  58. T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, Development status of highefficiency HIT solar cells. Sol. Energy Mater. Sol. 95, 18 (2010)

    Google Scholar 

  59. M.Q. Khokhar, S.Q. Hussain, S. Kim et al., Review of rear emitter silicon heterojunction solar cells. Trans. Electr. Electron. Mater. 21, 138–143 (2020)

    Google Scholar 

  60. K. Yoshikawa, H. Kawasaki, W. Yoshida et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2, 17032 (2017)

    CAS  Google Scholar 

  61. K.U. Isah, J.A. Yabagi, U. Ahmadu, M.I. Kimpa, M.G.Z. Kana, A. Aghagbudutema, Effect of different copper precursor layer thickness on properties of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurization of thermally deposited stacked metallic layers. IOSR J. Appl. Phys. 2(6), 14–19 (2013)

    Google Scholar 

  62. C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel, Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J. Am. Chem. Soc. 131(35), 12554–12555 (2009)

    CAS  Google Scholar 

  63. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, A 12.6% Cu2ZnSnSxSe4−x (CZTSSe) solar cell is presented with detailed device characteristics. Adv. Mater. 4(7), 1301465 (2013)

    Google Scholar 

  64. K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J.A. Stride, M. Green, X. Hao, Over 9% efficient kersterite Cu2ZnSnS4 solar cell fabricated by using Zn1-xCdxS buffer layer. Adv. Energy Mater. 6, 1600046 (2016). https://doi.org/10.1002/aenm.201600046

    Article  CAS  Google Scholar 

  65. L. Ciani, M. Catelani, L. Donati, M. Scaringella, E. Perrotta, and M. Bruzzi, Characterization of optical ageing effects on Ruthenium based dye-sensitized solar cells, in 2014 Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 491–495 (2014)

  66. M. Grätzel, B. O’Regan, A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Google Scholar 

  67. R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka and H. Katayama, Improvement of the conversion efficiency of a monolithic type dyesensitized solar cell module, Technical Digest, in 21st International Photovoltaic Science and Engineering Conference, Fukuoka, November 2011; 2C-5O-08 (2011)

  68. G. Scarpa, E. Martin, S. Locci, B. Fabel, P. Lugli, Organic thin-film phototransistors based on poly(3-hexylthiophene). J. Phys: Conf. Ser. 193(1), 012114 (2009)

    Google Scholar 

  69. L.D. Menard, J.M. Ramsey, Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett. 11(2), 512–517 (2011)

    CAS  Google Scholar 

  70. S. Mori, H. Oh-oka, H. Nakao, T. Gotanda, Y. Nakano, H. Jung, A. Iida, R. Hayase, N. Shida, M. Saito, K. Todori, T. Asakura, A. Matsui, M. Hosoya, Organic photovoltaic module development with inverted device structure. MRS Proc. 2015, 1737 (2015). https://doi.org/10.1557/opl.2015.540

    Article  CAS  Google Scholar 

  71. O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. J. Sci. 334(6062), 1530–1533 (2011)

    CAS  Google Scholar 

  72. Z. Zheng et al., Recent progress towards quantum dot solar cells with enhanced optical absorption. Nano Sci. Lett. 11, 266 (2016)

    Google Scholar 

  73. V.M. Andreev, V.A. Grilikhes, V.P. Khvostikov et al., Concentrator PV modules and solar cells for TPV systems. J. Solar Energy Mater. Solar Cells 84(1–4), 3–17 (2004)

    CAS  Google Scholar 

  74. J.I. Rosell, X. Vallverdu, M.A. Lechon, M. Ibanez, Design and simulation of a low concentrating photovoltaic/thermal system. J. Energy Convers. Manag. 46(18–19), 3034–3046 (2005)

    CAS  Google Scholar 

  75. F. Dimroth, T.N.D. Tibbits, M. Niemeyer, F. Predan, P. Beutel, C. Karcher, E. Oliva, G. Siefer, D. Lackner, P. Fuß-Kailuweit, A.W. Bett, R. Krause, C. Drazek, E. Guiot, J. Wasselin, A. Tauzin, T. Signamarcheix, Four-junction wafer-bonded concentrator solar cells. IEEE J. Photovolt. 6(1), 343–349 (2016)

    Google Scholar 

  76. NREL, 2020, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency. Accessed 2 June 2020

  77. NREL, 2020, Solar Technology Cost Analysis, https://www.nrel.gov/analysis/solar-cost-analysis Accessed 2 June 2020

  78. A. Patra et al., Solar cell production release hazardous gases and requires toxic materials. Int. J. Sci. Technol. Manag. 2(3), 25–31 (2013)

    Google Scholar 

  79. R. Chawla, P. Singhal, A.K. Garg, Internet of things driven framework for smart solar energy system. ASME J. Energy Resour. Technol. 142(1), 011201 (2020). https://doi.org/10.1115/1.4044124

    Article  CAS  Google Scholar 

  80. R. Chawla, P. Singal, A.K. Garg, A Mamdani fuzzy logic system to enhance solar cell micro-cracks image processing. Int. Res. 9, 34 (2018). https://doi.org/10.1007/s13319-018-0186-7

    Article  Google Scholar 

  81. MIT Energy Initiative. The Future of Solar Energy: An Interdisciplinary MIT Study, in Chapter 2: Photovoltaic Technology, pp. 21–45, (2015)

  82. Current and Future Costs of Photovoltaics: Long-term Scenarios for Market Development, System Prices and LCOE of Utility-scale PV Systems (Fraunhofer Institute for Solar Energy Systems, 2015); http://go.nature.com/2aYJCgc

  83. Sarkar, S., Rahman, M.M. A Novel Method for Optimizing Power Efficiency of a Solar Photovoltaic Device. Trans. Electr. Electron. Mater. (2020)

  84. N. Park, High efficiency perovskite solar cells: materials and devices engineering. Trans. Electr. Electron. Mater. 21, 1–15 (2020)

    CAS  Google Scholar 

  85. S. Albrecht et al., Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Chawla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawla, R., Singhal, P. & Garg, A.K. Photovoltaic Review of all Generations: Environmental Impact and Its Market Potential. Trans. Electr. Electron. Mater. 21, 456–476 (2020). https://doi.org/10.1007/s42341-020-00217-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00217-9

Keywords

Navigation