Skip to main content

Advertisement

Log in

Design and modelling of G–ZnO nanocomposite electrode for a-Si:H/µc-Si:H micromorph solar cell

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Solar photo voltaic cell (PVC) has shown colossal potential in reducing the cost of electricity and is considered to be one of the cleanest green forms of renewable energy. The current standard material for transparent electrodes in solar PVC is indium tin oxide (ITO). Owing to the high cost of ITO, scarcity and chemical instability of indium, graphene has been proposed as a potential alternative by scientists. This paper, suggest that replacing ITO with mono-layer graphene in amorphous silicon (a-Si) solar PVC yields comparable performance. This paper further explores standard multiple junctions tandem a-Si:H/µc-Si:H micromorph solar PVC (msPVC) for better efficiency and proposes the use of graphene (G)–zinc oxide (ZnO) nanocomposite electrode based msPVC (G-ZnOmsPVC) for better absorption. The modelling and characterisation is done on SILVACO-Atlas virtual fabrication tool. The results reveal that the G-ZnOmsPVC manifests higher power conversion efficiency and absorption spectrum than that of traditional msPVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Damiano A, Gatto G, Marongiu I, Porru M, Serpi A (2014) Real-time control strategy of energy storage systems for renewable energy sources exploitation. IEEE Trans Sustain Energy 5(2):567–576

    Article  Google Scholar 

  2. Bagher AM, Vahid MMA, Mohsen M (2015) Types of Solar Cells and Applications. Am J Opt Photonics 3:94–113

    Article  Google Scholar 

  3. Wurfel Uli, Cuevas Andres, Wurfel Peter (2015) Charge carrier separation in solar cells. IEEE J Photovolt 5:461–469

    Article  Google Scholar 

  4. Bondja CN, Geng Z, Granzner R, Pezoldt J, Schwierz F (2016) Simulation of 50-nm gate graphene nanoribbon transistors. Electronics. doi:10.3390/electronics5010003

    Google Scholar 

  5. Vaianella F, Rosolen G, Maes B (2015) Graphene as a transparent electrode for amorphous silicon-based solar cells. J Appl Phys 117(24):243102

    Article  Google Scholar 

  6. Ke Q, Wang J (2016) Graphene based materials for supercapacitor electrodes—a review. J Materiomics 2(1):37–54

    Article  MathSciNet  Google Scholar 

  7. Smith DD, Cousins P, Westerberg S, De Jesus-Tabajonda R, Aniero G, Shen Y-C (2014) Toward the practical limits of silicon solar cells. In: Proc. 40th IEEE photovoltaic spec. conf. pp 1465–1469

  8. Mohammed Ikbal Kabir, Seyed A. Shahahmadi, Victor Lim, Saleem Zaidi, Kamaruzzaman Sopian, and Nowshad Amin (2012) Amorphous Silicon Single-Junction Thin-Film Solar Cell Exceeding 10% Efficiency by Design Optimization, International Journal of Photoenergy, vol. 2012. doi:10.1155/2012/460919

  9. You J, Dou L et al (2013) Recent trends in polymer tandem solar cell research. J Prog Polym Sci 38(12):1909–1928

    Article  Google Scholar 

  10. Chowdhary TH, Islam A et al (2016) Prospects of graphene as a potential carrier-transport model in third generation solar cells, vol 16. The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 614–632

    Google Scholar 

  11. Youngseok L, Vinh AD, Iftiquar SM, Sangho K, Junsin Y (2016) Current transport studies of amorphous n–p junctions and its application in a-Si:H/HITtype tandem cells. J Prog Photovolt 24:52–58

    Article  Google Scholar 

  12. Saranya M, Ramachandran R, Wang F (2016) Graphene–zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor application. Adv Mater Devices 1(4):454–460

    Article  Google Scholar 

  13. Kabir MI, Ibrahim Z, Sopian K (2010) Effect of structural variations in amorphous silicon based single and multi-junction solar cells from numerical analysis. J Solar Energy Mater Solar Cells 94(9):1542–1545

    Article  Google Scholar 

  14. Kuang Y, Liu Y, Ma Y et al (2015) Modeling and Design of Graphene GaAs Junction Solar Cell. Adv Conden Matt Phys 2015. doi:10.1155/2015/326384

  15. Lu MN, Chang CY, Wei TC, Lin JY (2016) Recent development of graphene-based cathode materials for dye-sensitized solar cells. J Nanomaterials 2016. doi:10.1155/2016/4742724

  16. Castens L, Bailat J, Benagli S et al (2009) Advanced light management in micromorph solar cells. In: Inorganic nanostructured photovoltaics symposium B. pp 35–39

  17. Meillaud F, Battaglia C et al (2011) Latest developments of high efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design. In: IEEE photovoltaic specialist conference (PVSC). doi:10.1109/PVSC.2011.6185923

  18. Singh E, Nalwa HS (2015) Graphene based bulk heterojunction solar cells: a review. J Nanosci Nanotechnol 9:6237–6278

    Article  Google Scholar 

  19. Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E (2014) 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovolt 4:96–99

    Article  Google Scholar 

  20. Singh S, Singh A, Kaur N (2016) Efficiency investigations of organic/inorganic hybrid ZnO nanoparticles based dye-sensitized solar cells. J Mater 2016. doi:10.1155/2016/9081346

  21. Fujimoto Y (2015) Formation, energetics, and electronic properties of graphene monolayer and bilayer doped with heteroatoms. Adv Condens Matter Phys 2015. doi:10.1155/2015/571490 (Article ID 571490)

  22. Atlas User Manual Guide (2012)

  23. Zeman M, Krc J (2008) Optical and electrical modelling of thin film solar cells. J Mater Res 23(4):889–898

    Article  Google Scholar 

  24. Pathak MJM, Girotra K, Harrison SJ, Pearce JM (2012) The effect of hybrid photovoltaic thermal device operating conditions on intrinsic layer thickness optimization of hydrogenated amorphous silicon solar cells. Solar Energy 86:2673–2677

    Article  Google Scholar 

  25. Peplow M (2013) Graphene: the quest for supercarbon. Nature 503(7476):327–329

    Article  Google Scholar 

  26. Kaplan D, Swaminathan V, Recine G, Balu R, Karna S (2013) Bandgap tuning of mono-and bilayer graphene doped with group IV elements. J Appl Phys 113(18):183701

    Article  Google Scholar 

  27. Faryad M, Lakhtakia A (2013) Enhancement of light absorption efficiency of amorphous silicon thin-film tandem solar cell due to multiple surface-plasmon-polariton waves in the near-infrared spectral regime. Opt Eng 52(8):087106

    Article  Google Scholar 

  28. Bai L, Liu B et al (2015) Effect of I/N interface on the performance of superstrate hydrogenated microcrystalline silicon solar cells. J Solar Energy Mater Solar Cells 140:204–208

    Article  Google Scholar 

  29. Meillaud F, Billet A et al (2012) Latest developments of high-efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design. IEEE J Photovolt 2(3):236–240

    Article  Google Scholar 

  30. Fang J, Bai L et al (2016) High-efficiency micromorph solar cell with light management in tunnel recombination junction. J Solar Energy Mater Solar Cells 155:469–473

    Article  Google Scholar 

  31. Tavakoli MM, Tavakoli R, Hasanzadeh S, Mirfasih MH (2016) Interface engineering of perovskite solar cell using a reduced-graphene scaffold. J Phys Chem C 120(35):19531–19536

    Article  Google Scholar 

  32. Avrutin V et al. (2014) Amorphous and micromorph Si solar cells: current status and outlook. Turk J Phys 38:526–542. doi:10.3906/fiz-1406-14

    Article  Google Scholar 

  33. Jeng-Yu L et al. (2015) Molybdenum disulfide/reduced graphene oxide–carbon nanotube hybrids as efficient catalytic materials in dye-sensitized solar cells. J Chem Electro Chem. doi:10.1002/celc.201402423

    Google Scholar 

  34. Hafezi R et al. (2015) Material and solar cell research in high efficiency micromorph tandem solar cell. J of Ciência eNatura 37(2):434–440

    Article  Google Scholar 

  35. Chander S, Purohit A, Nehra A, Nehra SP, Dhaka MS (2015) A study on spectral response and external quantum efficiency of mono-crystalline silicon solar cell. Int J Renew Ener Res 5(1):41–44

  36. Ray SK et al. (2015) Design and modelling of GAAS/ INGAP/ INGAAS/ GE III–V triple junction solar cell. Inter J Elect Electron Eng 7(1):146–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Chawla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawla, R., Singhal, P. & Garg, A.K. Design and modelling of G–ZnO nanocomposite electrode for a-Si:H/µc-Si:H micromorph solar cell. Int. j. inf. tecnol. 10, 265–277 (2018). https://doi.org/10.1007/s41870-017-0043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-017-0043-6

Keywords

Navigation