Skip to main content
Log in

Design and performance Analysis of PDMS Based Micropump

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents the design and performance analysis of MEMS based piezoelectrically actuated micropump for drug delivery systems. The proposed micropump have achieved a flow velocity and flow rate of 8.92 m/s and 0.854 mL/min respectively at 50 V when BaTiO3 is used as piezoelectric material. The micropump comprises of four elements: electrodes, piezoelectric layer, flexible membrane and a reservoir. The obtained flow rate for the micropump is best suitable in cardio-vascular, hypertension cases where the drug need to be delivered with an appropriate flowrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.W. Ashraf, S. Tayyaba, Microelectromechanical systems based microfluidic devices for biomedical applications. Int. J. Mol. Sci. 12, 3648–3704 (2011)

    Article  CAS  Google Scholar 

  2. G.R.K. Prasad, N. Siddaiah, M. Preeti, K.S. Rao, E. Bhavitha, P.S.S. Babu, Comparative analysis of MEMS capacitive pressure sensor for detection of tremors in Parkinson’s disease. J. Theor. Appl. Inf. Technol. 95(9), 2023–2030 (2017)

    Google Scholar 

  3. G.R.K. Prasad, S. Shameem, N. Srinivasulu, C. Renukavalli, B. Manasa, P.S.S. Babu, Design and analysis of proof mass based micro sensor for early detection of Parkinson’’ disease. J. Adv. Res. Dyn. Control Syst. 10(7), 1461–1469 (2018)

    Google Scholar 

  4. G.V. Ganesh, Rao K. Srinivasa, Prasad N. Pavansai, Krishna K. Goutham, T. Sravani, K. Hemeema, RF MEMS based tunable CPW band pass filter integrating periodic circular slot cells. J. Adv. Res. Dyn. Control Syst. 17, 2053–2065 (2017)

    Google Scholar 

  5. Narayana T. Lakshmi, Sravani K. Girija, Rao K. Srinivasa, A micro level electrostatically actuated cantilever and metal contact based series RF MEMS switch for multi-band applications. Cogent Eng. (2017). https://doi.org/10.1080/23311916.2017.1323367

    Article  Google Scholar 

  6. N. Siddaiah, G.R.K. Prasad, S.S. Sai Pravallika, G.V.S. Sai Prasanna, R.R. Raja Gopal, Performance of analysis crab leg based RF MEMS switch for defense and aerospace applications. J. Adv. Res. Dyn. Control Syst. 10(4), 1377–1383 (2018)

    Google Scholar 

  7. K. Guha, N.M. Laskar, H.J. Gogoi, K.L. Baishnab, K.S. Rao, N.P. Maity, Correction to: A newanalytical model for switching time of a perforated MEMS switch (Microsystem Technologies, (2018) https://doi.org/10.1007/s00542-018-3803-8). Lecture Notes in Electrical Engineering, vol. 471 (2018). pp. 571–580. https://doi.org/10.1007/978-981-10-7329-8_58

  8. N. Siddaiah, T. Roshini, V. Sai Krishna, G. Prasanth, K. Likhith, Performance analysis of cantilever based bio-sensor for pathogen detection. In: Lecture Notes in Electrical Engineering, vol. 471 (2018) pp. 165–176. https://doi.org/10.1007/978-981-10-7329-8_17

  9. N. Siddaiah, G.R.K. Prasad, K. Asritha, P.V. Hanumanthu, N. Anvitha, T.N.V. Chandra Sekhar, Design and model analysis of various shape cantilever based sensors for biomolecules detection. J. Adv. Res. Dyn. Control Syst. 9(16), 476–485 (2017)

    Google Scholar 

  10. G.R.K. Prasad, P.S. Srinivas Babu, N. Siddaiah, Rao K. Srinivasa, Design and simulation of MEMS based sensor for early detection of PD. Int. Conf. Electr. Electron. Commun. Comput. Optim. Tech. ICEECCOT 2016, 366–371 (2016). https://doi.org/10.1109/ICEECCOT.2016.7955247

    Article  Google Scholar 

  11. G.S.K. Santosh, K.P.M.S. Kumar, G.R.K. Prasad, K. Srinivasarao, Design and simulation of spinning wheel type crash sensor for the airbag system in car. Int. J. Eng. Technol. (UAE) 7(1.5), 7–12 (2018)

    Google Scholar 

  12. J. SriVarshini, V. NarasimhaNayak, Implementation of video-processing and control on a zynq soc platform. Int. J. Eng. Technol. 8(1), 274–279 (2016)

    Google Scholar 

  13. J. Mounica, G.V. Ganesh, Design of a nonvolatile 8T1R SRAM Cell for instant-on operation. Int. J. Electr. Comput. Eng. 6(3), 1183–1189 (2016)

    Google Scholar 

  14. Krishna B. Murali, G.L. Madhumati, H. Khan, FPGA implementation of partially reconfigurable DNA cryptography methods through wireless using Zigbee. ARPN J. Eng. Appl. Sci. 11(21), 12514–12522 (2016)

    Google Scholar 

  15. M.G.G. Jithendra Prasad, S. Shameem, Design and analysis of micro-cantilever-based biosensor for swine flu detection. Int. J. Electr. Comput. Eng. 6(3), 1190–1196 (2016)

    Google Scholar 

  16. G.R.K. Prasad, N. Siddaiah, P.S. Srinivas Babu, Design and model analysis of circular cantilever sensor for early detection of Parkinson’s disease. J. Adv. Res. Dyn. Control Syst. 9(16), 433–444 (2017)

    Google Scholar 

  17. S. Shameem, G.R.K. Prasad, G. Kalyan, H. Sri varun, P.S.S. Babu, Design and analysis of MEMS based capacitive pressure sensor for the detection of colon cancer. J. Adv. Res. Dyn. Control Syst. 10(2), 1434–1438 (2018)

    Google Scholar 

  18. Sravani K. Girija, Lakshmi G. Sai, Rao K. Srinivasa, Design and optimization of Piezoresistive materials based microbridge for electro-osmosis pressure sensor. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00098-7

    Article  Google Scholar 

  19. Krishna B. Murali, G.L. Madhumati, H. Khan, FPGA based pseudo random sequence generator using XOR/XNOR for communication cryptography and VLSI testing applications. Int. J. Innov. Technol. Explor. Eng. 8(4), 485–494 (2019)

    Google Scholar 

  20. K. Naga Lakshmi Prasanna, Krishna B. Murali, S.K. Sadiya Shireen, A. Poorna Chander Reddy, FPGA based convolutional encoder for GSM-900 architecture. Int. J. Innov. Technol. Explor. Eng. 8(4), 642–650 (2019)

    Google Scholar 

  21. B.Y. Vinay Kumar, S. Shameem, G.V. Ganesh, Optimum resolution of phase frequency detector by CMOS technology for PLL. Int. J. Eng. Technol. 7(6), 2240–2247 (2016)

    Google Scholar 

  22. Y.M.S. Reddy, R.S.E. Ravindran, K.H. Kishore, Diabetic retinopathy through retinal image analysis: a review. Int. J. Eng. Technol. (UAE) 7(3), 1078–1080 (2018)

    Google Scholar 

  23. K.S. Rao, J. Sateesh, K. Guha, K.L. Baishnab, P. Ashok, K.G. Sravani, Design and analysis of MEMS based piezoelectric micropump integrated with micro needle. Microsyst. Technol. (2018). https://doi.org/10.1007/s00542-018-3807-4

    Article  Google Scholar 

  24. R. Zengerle, S. Kluge, M. Richter, A. Richter, A Bi-directional silicon micropump (1995)

  25. P.K. Podder, D.P. Samajdar, D. Mallick, A. Bhattacharyya, Design, simulation and study of micro-pump, micro-valve and micro-needle for biomedical applications (2012)

  26. H.T. Chang, C.Y. Lee, Design and modeling of electromagnetic actuator in MEMS-based valveless impedance pump (2007)

  27. K. Junwu, Y. Zhigang, P. Taijiang, C. Guangming, W. Boda, Design and test of a high-performance piezoelectric micropump for drug delivery (2005)

  28. L. Cao, S. Mantell, D. Polla, Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology (2001)

  29. S.M. Rao, A. Mhatre, D.O. Popa, J.C. Chiao, T. Ativanichayaphong, J. Sin, H.E. Stephanou, MEMS-based implantable drug delivery system (2005)

  30. Q. Cui, C. Liu, X.F. Zha, Study on a piezoelectric micropump for the controlled drug delivery system (2006)

  31. G.R.K. Prasad, D. Paradhasaradhi, G.M.S. Reddy, K. Rao, V.S.V. Prabhakar, Design and verification of AXI APB bridge using system verilog. Int. J. Eng. Technol. (UAE) 7(1.5), 226–229 (2018)

    Google Scholar 

  32. M.S. Kumar, Krishna B. Murali, N.S. Tejeswi, S.K. Tulasi, N. Srinivasulu, K.H. Kishore, FPGA implementation of tunable arbitrary sequencer for key generation mechanism. Int. J. Eng. Technol. (UAE) 7(3.27), 617–620 (2018). https://doi.org/10.2147/nbhiv.s68956_old

    Article  Google Scholar 

  33. B. Pramanickla, P.K. Deyb, S. Dasc, T.K. Bhattacharyyad, Design and development of a PDMS membrane based SU-8 micropump for drug delivery system (2013)

  34. J. Sateesh, K.S. Rao, Simulation of MEMS based drug delivery system. Int. J. Biosens. Bioelectron. (2017). https://doi.org/10.15406/ijbsbe.2017.02.00025

    Article  Google Scholar 

  35. P.K. Panda, Review of environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44(19), 5049–5062 (2019)

    Article  CAS  Google Scholar 

  36. J. Sateesh, K.G. Sravanil, R.A. Kumar, K. Guha, K.S. Rao, Design and flow analysis of MEMS based Piezo-electric micropump. (2018). https://doi.org/10.1007/s00542-017-3563-x

  37. P. Goodman, Current and future uses of gold in electronics (2002)

  38. C.H. Cheng, Y.P. Tseng, Characteristic studies of the Piezoelectrically actuated micropump with check valve. Microsyst. Technol. 19, 1707–1715 (2013)

    Article  CAS  Google Scholar 

  39. C.H. Cheng, A.S. Yang, C.J. Lin, W.J. Huang, Characteristic studies of a novel piezoelectric impedance micropump. Microsyst. Technol. 23, 1709–1717 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Srinivasa Rao or K. Chandrasekharam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K.S., Chandrasekharam, K., Sai Sri, S.B. et al. Design and performance Analysis of PDMS Based Micropump. Trans. Electr. Electron. Mater. 21, 497–502 (2020). https://doi.org/10.1007/s42341-020-00200-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00200-4

Keywords

Navigation