Skip to main content
Log in

Synthesis of Tin-Doped FeVSb Half-Heusler System by Mechanical Alloying and Evaluation of Thermoelectric Performance

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In the current work, we tried to investigate and compare the thermoelectric performance of the FeVSb1−xSnx (x = 0.0–0.05) half-Heusler system. The elemental mixture was formulated and subjected to mechanical alloying, and subsequently consolidated using vacuum hot pressing. X-ray diffractometry analysis was used to observe phase transition during the process, and scanning electron microscopy was utilized for microstructure analysis. After vacuum hot pressing, a near single phase of FeVSb1−xSnx (x = 0.0–0.05) was observed with small portions of second phases. The vacuum hot-pressed samples were analyzed to study the thermoelectric properties as a function of temperature up to 980 K. The n-type conduction was confirmed from Seebeck and Hall coefficients in the test range. In addition, the electrical conductivity showed combined conduction behavior in the test range, while the thermal conductivities showed abnormal behavior. Mass fluctuation scattering and changing in carrier concentration might have taken place during doping. The Seebeck coefficient and electrical conductivity of the system also decreased after doping. Dimensionless figure of merit values were calculated and compared with the results of analogue studies. The maximum ZT value was obtained for x = 0.01 at 553 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  2. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009)

    Article  Google Scholar 

  3. J.F. Li, W.S. Liu, L.D. Zhao, M. Zhou, NPG Asia Mater. 2, 152 (2010)

    Article  Google Scholar 

  4. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, E. Bucher, J. Phys. Condens. Matter 11, 1697 (1999)

    Article  Google Scholar 

  5. S. Ogut, K.M. Rabe, Phys. Rev. B 51, 10443 (1995)

    Article  Google Scholar 

  6. P. Larson, S.D. Mahanti, M.G. Kanatzidis, Phys. Rev. B 62, 12754 (2000)

    Article  Google Scholar 

  7. J. Yang, H.M. Li, T. Wu, W.Q. Zhang, L.D. Chen, J.H. Yang, Adv. Funct. Mater. 18, 2880 (2008)

    Article  Google Scholar 

  8. D.M. Rowe, CRC Handbook of Thermoelectrics, 1st edn. (CRC Press, Boca Raton, 1995), p. 38

    Book  Google Scholar 

  9. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, H. Weller, Adv. Funct. Mater. 19, 3476 (2009)

    Article  Google Scholar 

  10. Y. Gelbstein, Y. Rosenberg, Y. Sadia, M. Dariel, J. Phys. Chem. C 114, 13126 (2010)

    Article  Google Scholar 

  11. S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, J. Blumm, Appl. Phys. Lett. 88, 1 (2006)

    Article  Google Scholar 

  12. A. Rizwan, Z. Qiang, Y. Dongwang, Z. Yun, Y. Yanggao, S. Xianli, T. Xinfeng, J. Electr. Mater. 44, 10 (2015)

    Google Scholar 

  13. H. Lihong, H. Ran, C. Shuo, Z. Hao, D. Keshab, Z. Haiking, W. Hui, Z. Quinong, R. Zhifen, Mater. Res. Bull. 70, 773 (2015)

    Article  Google Scholar 

  14. A. Bulusu, D.G. Walker, Superlattices Microstruct. 44, 5 (2008)

    Article  Google Scholar 

  15. Y. Stadnyk, A. Horyn, V. Sechovsky, L. Romaka, Y. Mudryk, J. Tobola et al., J. Alloys Compd. 402, 30 (2005)

    Article  Google Scholar 

  16. D.P. Young, P. Khalifah, R.J. Cava, A.P. Ramirez, J. Appl. Phys. 87, 317 (2000)

    Article  Google Scholar 

  17. L. Jodin, J. Tobola, P. Pecheur, H. Scherrer, S. Kaprzyk, Phys. Rev. B 70, 3 (2004)

    Article  Google Scholar 

  18. M. Zou, J.F. Li, P. Guo, T. Kita, J. Phys. D Appl. Phys. 43, 2 (2010)

    Article  Google Scholar 

  19. S.-C. Ur, H. Choo, D.B. Lee, P. Nash, Met. Mater. Int. 6, 435 (2000)

    Article  Google Scholar 

  20. M. Blair, T.L. Stevens, Steel Castings Handbook, 6th edn. (ASM, Materials Park, 1995), p. 16

    Google Scholar 

  21. E.P. Degarmo, J.T. Black, R.A. Kohser, Materials and Processes in Manufacturing, 9th edn. (Prentice Hall, Upper Saddle River, 2003), p. 107

    Google Scholar 

  22. P. Jozwik, Z. Bojar, J. Met. Matter 52, 321 (2007)

    Google Scholar 

  23. X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, Z. Ren, Energy Environ. Sci. 5, 7543 (2012)

    Article  Google Scholar 

  24. J. Li, Q. Yu, W. Sun, R. Zhang, D. Ichigozaki, K. Wang, J.F. Li, J. Phys. Conf. Ser. 419, 12 (2013)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Regional Innovation Center (RIC) Program, which was conducted by the ministry of SMEs and Startups of the Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Chul Ur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, R., Ur, SC. Synthesis of Tin-Doped FeVSb Half-Heusler System by Mechanical Alloying and Evaluation of Thermoelectric Performance. Trans. Electr. Electron. Mater. 19, 106–111 (2018). https://doi.org/10.1007/s42341-018-0024-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0024-x

Keywords

Navigation