Skip to main content
Log in

Synthesis of FeVSb1−xSex Half-Heusler Alloys via Mechanical Alloying and Evaluation of Transport and Thermoelectric Properties

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Se-doped half-Heusler compositions, FeVSb1−xSex (0.03 ≤ x ≤ 0.15), were fabricated by mechanical alloying followed by vacuum hot pressing. The goal of this synthesis was to explore the effect of Se doping on the thermoelectric and transport properties of FeVSb system. A near single half-Heusler phase was found to form; however, a second phase of FeSb2 couldn’t be avoided in this process. N-type conduction was confirmed and Se acted as a donor for the FeVSb system. Lattice thermal conductivity also considerably decreased after Se doping. The absolute value of Seebeck coefficient is increased to a maximum of 126 μVK−1 at 956 K for x = 0.12, which may help to increase the figure of merit (ZT) of the FeVSb system. The figure of merit is improved by Se doping, and the improvement is possibly owing to the combined effect of fine grain structure, increased effective mass and phonon scattering at the grain boundaries. A maximum ZT of 0.27 was achieved for FeVSb0.88Se0.12 at 847 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008). https://doi.org/10.1126/science.1158899.

    Article  CAS  Google Scholar 

  2. J.H. Yang and F.R. Stabler, J. Electron. Mater. 38, 1245 (2009). https://doi.org/10.1007/s11664-009-0680-z.

    Article  CAS  Google Scholar 

  3. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008). https://doi.org/10.1126/science.1159725.

    Article  CAS  Google Scholar 

  4. Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, and G.J. Snyder, Nature 473, 66 (2011). https://doi.org/10.1038/nature09996.

    Article  CAS  Google Scholar 

  5. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996). https://doi.org/10.1126/science.272.5266.1325.

    Article  CAS  Google Scholar 

  6. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B. 59, 8615 (1999). https://doi.org/10.1103/PhysRevB.59.8615.

    Article  CAS  Google Scholar 

  7. S.J. Poon, Recent trends in thermoelectric materials research II.Semi-conductors and Semimetals, ed. T.M. Tritt (New York: Elsevier, 2000), p. 37.

    Google Scholar 

  8. K.D. Codrin, T. Yamada, A. Yamamoto, R. Sobota, M. Matsunami, and T. Takeuchi, Jpn. J. Appl. Phys. 56, 111202 (2017). https://doi.org/10.7567/JJAP.56.111202.

    Article  Google Scholar 

  9. M. Zou, J.F. Li, and T. Kita, J. Solid State Chem. 198, 125 (2013). https://doi.org/10.1016/j.jssc.2012.09.043.

    Article  CAS  Google Scholar 

  10. C. Fu, H. Xie, T. Zhu, J. Xie, and B.X. Zhao, J. Appl. Phys. 112, 124915 (2012). https://doi.org/10.1063/1.4772605.

    Article  CAS  Google Scholar 

  11. S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 082105 (2005). https://doi.org/10.1063/1.1868063.

    Article  CAS  Google Scholar 

  12. E. Rausch, B. Balke, S. Ouardi, and C. Felser, Phys. Chem. Chem. Phys. 16, 25258 (2014). https://doi.org/10.1039/C4CP02561J.

    Article  CAS  Google Scholar 

  13. S. Populoh, M. Aguirre, O. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Materials 6, 1326 (2013). https://doi.org/10.3390/ma6041326.

    Article  CAS  Google Scholar 

  14. M. Schwall and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013). https://doi.org/10.1039/C2CP43946H.

    Article  CAS  Google Scholar 

  15. X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, and Z. Ren, Energy Environ. Sci. 5, 7543 (2012). https://doi.org/10.1039/C2EE21554C.

    Article  CAS  Google Scholar 

  16. P. Qiu, X. Huang, X. Chen, and L. Chen, J. Appl. Phys. 106, 103703 (2009). https://doi.org/10.1063/1.3238363.

    Article  CAS  Google Scholar 

  17. R. Stern, B. Dongre, and G.K.H. Madsen, Nanotechnology 27, 334002 (2016). https://doi.org/10.1088/0957-4484/27/33/334002.

    Article  CAS  Google Scholar 

  18. A.P. Mauritz, Introduction to Aerospace Materials (Sawston. p: Woodhead Publishing Limited, 2012), p. 430.

    Book  Google Scholar 

  19. A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991). https://doi.org/10.1103/PhysRevA.43.3161.

    Article  CAS  Google Scholar 

  20. B.D. Cullity, Elements of x-ray Diffraction, 2nd ed. (Massachusetts: Addison-Wesley Publishing Company Inc., 1978), p. 167.https://doi.org/10.1088/0031-9112/29/12/034.

    Book  Google Scholar 

  21. A. Rizwan, Z. Qiang, Y. Dongwang, Z. Yun, Y. Yanggao, S. Xianli, and T. Xinfeng, J. Electron. Mater. 44, 3563 (2015). https://doi.org/10.1007/s11664-015-3882-6.

    Article  CAS  Google Scholar 

  22. P. Maji, N.J. Takas, D.K. Misra, H. Gabrisch, K. Stokes, and P.F.P. Poudeu, J. Solid State Chem. 183, 1120 (2010). https://doi.org/10.1016/j.jssc.2010.03.023.

    Article  CAS  Google Scholar 

  23. T.T. Khan, I. Mahmud, and S.-C. Ur, Korean J. Mater. Res. 27, 416 (2017). https://doi.org/10.3740/MRSK.2017.27.8.416.

    Article  Google Scholar 

  24. R.F. Decker, Metall. Trans. 4, 2495 (1973). https://doi.org/10.1007/BF02644252.

    Article  CAS  Google Scholar 

  25. R. Hasan and S.-C. Ur, Trans. Electr. Electron. Mater. 19, 106 (2018). https://doi.org/10.1007/s42341-018-0024-x.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Regional Innovation Center (RIC) Program, which was conducted by the Ministry of SMEs and Startups of the Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Chul Ur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, R., Ur, SC. Synthesis of FeVSb1−xSex Half-Heusler Alloys via Mechanical Alloying and Evaluation of Transport and Thermoelectric Properties. J. Electron. Mater. 49, 2719–2725 (2020). https://doi.org/10.1007/s11664-019-07653-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07653-1

Keywords

Navigation