Skip to main content
Log in

Review of Contemporary QSAR Study Approach

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Background

QSAR modelling is a powerful technique widely used in the discovery and development of new drugs and chemicals.

The approach involves the use of mathematical and statistical techniques to develop models that relate biological activity to the chemical structure of compounds. An effective strategy for QSAR modelling requires an understanding of the descriptors that are used to represent the chemical structure of compounds and the selection of appropriate prediction algorithms. In this review, we were discussed the importance of developing a well-thought-out strategy for QSAR modelling, including the strategy of appropriate descriptors and physiochemical parameters were used for QSAR. We were also provided the review on the current strategies for conducting QSAR studies and discussing their parameters, descriptors and applications in drug discovery, toxicity testing, and more.

Conclusion

This finding suggests how to develop an effective QSAR modelling approach that can be used to accurately predict the activity of new compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

QSAR:

Quantitative structure activity relationship

SAR:

Structure Activity Relationship

logP:

Log of the partition co-efficient

pKa:

Equilibrium constant

References

  1. Yu Wenbo et al (2017) Computer-aided drug design methods. Methods Mol Biol 15(20):85–106

    Article  Google Scholar 

  2. Da-Yong Lu, Ting-Ren Lu (2020) Anticancer drug development, challenge and dilemma. Nurse Care Open Acces J 7(3):72–75

    Article  Google Scholar 

  3. Cui W, Aouidate A, Wang S, Yu Q, Li Y, Yuan S (2020) Discovering anti-cancer drugs via computational methods. Front Pharmacol 11:733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Surabhi Singh, B. K. (2018) Computer aided drug design: an overview. J Drug Deliv Ther 8(5):504–509

    Article  CAS  Google Scholar 

  5. Ece A (2023) Computer-aided drug design. BMC. Chemistry 17:26. https://doi.org/10.1186/s13065-023-00939-w

    Article  Google Scholar 

  6. Tamer N, Jarada Jon, Rokne G, Alhajj Reda (2020) A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J Cheminform 12:46

    Article  Google Scholar 

  7. Oprea Tudor I, Overington John P (2015) Computational and practical aspects of drug repositioning. Assay Drug Dev Technol 13(6):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaker Bilal, Ahmad Sajjad et al (2021) In silico methods and tools for drug discovery. Comput Biol Med 137:104851

    Article  PubMed  Google Scholar 

  9. Makrynitsa GI, Lykouras M, Spyroulias GA, Matsoukas M.-T (2018) In silico Drug Design. In: eLS. John Wiley & Sons, Ltd (Ed.). https://doi.org/10.1002/9780470015902.a0028112

  10. Lu W, Zhang R, Jiang H, Zhang H, Luo C (2018) Computer-aided drug design in epigenetics. Front Chem 6:57

    Article  PubMed  PubMed Central  Google Scholar 

  11. Achary PGR (2020) Mini Rev Med Chem 20(14):1375–1388

    Article  PubMed  Google Scholar 

  12. Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH (2018) QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol 9:1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Achary P (2014) QSPR modelling of dielectric constants of π-conjugated organic compounds by means of the CORAL software. SAR QSAR Environ Res 25:507–526

    Article  CAS  PubMed  Google Scholar 

  14. Agresti A (2007) An introduction to categorical data analysis, John Wiley. Second Edition, Department of Statistics University of Florida Gainesville, Florida. ISBN 978-0-471-22618-5

  15. Andrews CW, Bennett L, Lawrence XY (2000) Predicting human oral bioavailability of a compound: development of a novel quantitative structure bioavailability relationship. Pharm Res 17:639–644

    Article  CAS  PubMed  Google Scholar 

  16. Balaban AT (1982) Highly discriminating distance-based topological index. Chem Phys Lett 89:399–404

    Article  CAS  Google Scholar 

  17. Barber CE, Marshall DA, Mosher DP, Akhavan P, Tucker L, Houghton K, Batthish M, Levy DM, Schmeling H, Ellsworth J, Tibollo H, Grant S, Khodyakov D, Lacaille D (2016) Arthritis alliance of Canada performance measurement development panel. Development of system-level performance measures for evaluation of models of care for inflammatory arthritis in Canada. J Rheumatol 43(3):530–40. https://doi.org/10.3899/jrheum.150839

    Article  PubMed  Google Scholar 

  18. Barycki M, Sosnowska A, Puzyn T (2017) Which structural features stand behind micelization of ionic liquids? Quantitative structure-property relationship studies. J Colloid Interface Sci 487:475–483

    Article  CAS  PubMed  Google Scholar 

  19. Berinde Z (2013) A QSPR study of hydrophobicity of phenols and 2-(aryloxy-α-acetyl)- phenoxathiin derivatives using the topological index ZEP. Creative Math Inform 22:33–40

    Article  Google Scholar 

  20. Basith Shaherin, Cui Minghua et al (2017) Expediting the design, discovery and development of anticancer drugs using computational approaches. Curr Med Chem 24:4753–4778

  21. Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K (2020) In silico methods for design of kinase inhibitors as anticancer drugs. Front Chem 7:873

    Article  PubMed  PubMed Central  Google Scholar 

  22. Raval K, Ganatra T (2022) Basics, types and applications of molecular docking: a review. Int J Compr Adv Pharmacol 7(1):12–16

    Article  Google Scholar 

  23. Wang X, Song K, Li L, Chen L (2018) Structure-based drug design strategies and challenges. Curr Top Med Chem 18:998–1006

    Article  CAS  PubMed  Google Scholar 

  24. Fyaz MDI, Nahar L, Sarker SD (2018) High-Throughput screening of phytochemicals: application of computational methods. In: Sarker SD, Nahar L (eds) Computational phytochemistry. Elsevier, pp 165–192

    Google Scholar 

  25. Wenbo Yu et al (2017) Computer-aided drug design methods. Methods Mol Biol 1520:85–106

    Article  Google Scholar 

  26. Surabhi Singh, B. K. (2018) Computer aided drug design: an overview. J Drug Deliv Ther 8(5):504–509

    Article  CAS  Google Scholar 

  27. Ece Abdulilah (2023) Computer-aided drug design. Ece BMC Chem 17:26

    Article  PubMed  Google Scholar 

  28. Shaker Bilal, Ahmad Sajjad et al (2021) In silico methods and tools for drug discovery. Comput Biol Med. 137:104851

    Article  PubMed  Google Scholar 

  29. Makrynitsa GI, Lykouras M, Spyroulias GA, Matsoukas M-T (2018) In silico drug design. In: eLS. John Wiley & Sons, Ltd, Chichester

  30. Lu W, Zhang R, Jiang H, Zhang H, Luo C (2018) Computer-aided drug design in epigenetics. Front Chem 6:57

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yousefinejad S, Hemmateenejad B (2015) Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemom Intell Lab Syst 149:177–204

    Article  CAS  Google Scholar 

  32. Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. WIREs Comput Mol Sci 6(2):147–172

    Article  CAS  Google Scholar 

  33. Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N et al (2021) A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J 19:4538–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vamathevan J, Clark D, Czodrowski P et al (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discovery 18(6):463–477

    Article  CAS  PubMed  Google Scholar 

  35. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P (2021) Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 25(3):1315–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N et al (2021) A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J 19:4538–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dara S, Dhamercherla S, Jadav SS, Babu ChM, Ahsan MJ (2021) Machine learning in drug discovery: a review. Artif Intell Rev 55(3):1947–1999

    Article  PubMed  PubMed Central  Google Scholar 

  38. Réda C, Kaufmann E, Delahaye-Duriez A (2020) Machine learning applications in drug development. Comput Struct Biotechnol J 18:241–252

    Article  PubMed  Google Scholar 

  39. Golbraikh A, Wang XS, Zhu H, Tropsha A (2012) Predictive QSAR modeling: Methods and applications in drug discovery and chemical risk assessment. In: Handbook of Computational Chemistry, Springer, Netherlands, pp 1309–1342. https://doi.org/10.1007/978-94-007-0711-5_37

  40. Tropsha A, Gelbukh A (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13(34):3494–3504

    Article  CAS  PubMed  Google Scholar 

  41. Kim E, Yang C (2020) Application of quantitative structure activity relationship models for virtual screening drug libraries: an overview of state-of-the art methodologies and strategies. Drug Des Rev 6(2):75–88

    Google Scholar 

  42. Dablander M et al (2023) Exploring QSAR models for activity-clif prediction. J Cheminformatics 15:47

    Article  Google Scholar 

  43. Sharan S, Swaminathan PN (2020) Exploring new avenues using pharmacophore mapping. Int J Pharm Sci Res 11(11):5270–5279

    Google Scholar 

  44. Manisha YJ, Satya E (2022) Modern paradigm towards potential target identification for antiviral (SARS-nCoV-2) and anticancer lipopeptides: a pharmacophore-based approach. Avicenna J Med Biotechnol 14(1):70–78

  45. Khedkar SA et al (2007) Pharmacophore modeling in drug discovery and development: an overview. Med Chem 3(2):187–97

    Article  CAS  PubMed  Google Scholar 

  46. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design - a review. Curr Top Med Chem (Print) 10(1):95–115

    Article  CAS  Google Scholar 

  47. Toshio F (1995) QSAR and drug design: new developments and applications, vol 23. pp 3–493

  48. Tropsha A, Cho SJ, Zheng W (1999) “New tricks for an old dog”: development and application of novel QSAR methods for rational design of combinatorial chemical libraries and database mining. ACS Symposium Series 719:198–211. https://doi.org/10.1021/bk-1999-0719.ch013

    Article  CAS  Google Scholar 

  49. Kleandrova VV et al (2021) QSAR modeling for multi-target drug discovery: designing simultaneous inhibitors of proteins in diverse pathogenic parasites. Front Chem 9:634663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Speck-Planche Alejandro, Valeria V et al (2012) Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents. Bioorg Med Chem 20:4848–4855

    Article  CAS  PubMed  Google Scholar 

  51. Zhao L, Teng Q, Liu Y, Chen H et al (2022) Machine learning-based identification of a novel prognosis-related long noncoding RNA signature for gastric cancer. Front Cell Dev Biol 10(1017767):1–20

    Google Scholar 

  52. Cox PB et al. (2022) Contemporary computational applications and tools in drug discovery. ACS Med Chem Lett 13, 7, 1016–1029

  53. Ojha Probir Kumar et al (2021) Recent advances in quantitative structure-activity relationship models of antimalarial drugs. Expert Opin Drug Discov 16(6):659–695

    Article  PubMed  Google Scholar 

  54. Chen B, Zhang T, Bond T, Gan Y (2015) Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: a review of methods and resources. J Hazard Mater (Print) 299:260–279

    Article  CAS  Google Scholar 

  55. Yousefinejad S, Hemmateenejad B (2015) Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemom Intell Lab Syst 149:177–204

    Article  CAS  Google Scholar 

  56. He L, Jurs PC (2005) Assessing the reliability of a QSAR model’s predictions. J Mol Graph Model 23(6):503–523

    Article  CAS  PubMed  Google Scholar 

  57. Maruca A et al (2019) Computer-based techniques for lead identification and optimization I: basics. Phys Sci Rev 11

  58. Carels N, Tilli T, Tuszynski JA (2015) A computational strategy to select optimized protein targets for drug development toward the control of cancer diseases. PLoS One 10(1):e0115054

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ferreira AK, Kawamura B, Jorge SD, de Azevedo RA, Zaim MH et al (2017) Developing novel anticancer drug candidates regarding the integration of three main knowledge fields: computeraided drug design, chemical synthesis, and pharmacological evaluation. J Drug Des Res 4(2):1035

    Google Scholar 

  60. Sugrue MF (2000) Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res 19(1):87–112

    Article  CAS  PubMed  Google Scholar 

  61. Monroe D (2016) Looking for chinks in the armor of bacterial biofilms. PLoS Biol 5(11):e307. 5

  62. Jagiełło K, Grzonkowska M, Swirog M et al (2016) Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives. J Nanopart Res 18(9)

  63. Cherkasov A, Muratov E, Fourches D et al (2014) QSAR modeling: Where have you been? Where are you going to? J Med Chem 57(12):4977–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst (Print) 145:22–29

    Article  CAS  Google Scholar 

  65. Ghasemi F, Mehridehnavi A, Pérez-Garrido A, Pérez-Sánchez H (2018) Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discov Today 23(10):1784–1790

    Article  CAS  PubMed  Google Scholar 

  66. Nicotia (2021) Introduction to (Quantitative) Structure Activity Relationships. J Anat Physiol 2:224–42

    Google Scholar 

  67. Selassie C, Verma RP (2016) History of quantitative structure– activity relationships. In: Abraham DJ (editor) Burger's medicinal chemistry and drug discovery. 1–96

  68. Mishra V, Siva-Prasad CV (2011) Ligand based virtual screening to find novel inhibitors against plant toxin Ricin by using the ZINC database. Bioinformation 7:46–51

    Article  PubMed  PubMed Central  Google Scholar 

  69. Song CM, Lim SJ, Tong JC (2009) Recent advances in computeraided drug design. Brief Bioinform 10:579–591

    Article  CAS  PubMed  Google Scholar 

  70. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813

    Article  CAS  PubMed  Google Scholar 

  71. Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45:4350

    Article  CAS  PubMed  Google Scholar 

  72. Tropsha A (2010) Best Practices for QSAR model development, validation, and exploitation. Mol Inf 29(6–7):476–488

    Article  CAS  Google Scholar 

  73. Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov E, Andrade CH (2018) QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol 9

  74. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949

    Article  CAS  PubMed  Google Scholar 

  75. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813

    Article  CAS  PubMed  Google Scholar 

  76. Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45:4350

    Article  CAS  PubMed  Google Scholar 

  77. Gramatica P (2012) On the development and validation of QSAR models. In: Methods in molecular biology. 499–526

  78. Tropsha A, Gelbukh A (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharml Des (Print) 13(34):3494–3504

    Article  CAS  Google Scholar 

  79. Devillers J, Balaban AT (2000) Topological indices and related descriptors in QSAR and QSPR

  80. Eriksson L, Johansson E (1996) Multivariate design and modeling in QSAR. Chemom Intell Lab Syst 34(1):1–19

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Vijayalakshmi.

Ethics declarations

Conflicts of Interest

There is no conflict of interest in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, M.K., Srinivasan, R. Review of Contemporary QSAR Study Approach. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00983-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00983-6

Keywords

Navigation