Skip to main content
Log in

Enhancing the Photocatalytic Degradation of Selected Estrogenic Hormone Using ZnO/Hydroxyapatite Nanocomposite

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Combining 40wt.% ZnO with HAP within a low-cost coprecipitation method results in a 40ZnO:HAP composite with a high specific surface area of 250 m2g−1 that is able to retain the 17α-ethinyl estradiol (EE2), a hormonal model, and then degrade it under UV light. The particle size is between 10 and 20 with platelet morphology of approximately 5 nm. Due to the large structure of EE2, its adsorption on ZnO, HAP and 40ZnHAP is low, but it is easily degraded under UV light. The experimental adsorption kinetics matches well with the pseudo-first-order equation and the maximum adsorption capacity (qe) is the highest for the 40ZnHAP nanocomposite though it does not exceed 1.1 mg g−1. The complete degradation of EE2 is achieved for 40ZnHAP and ZnO at 90 min and 120 min, respectively. Results indicate that the combination of ZnO and porous apatite is an interesting combination for the efficient degradation of EE2 hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Letsoalo MR, Sithole T, Mufamadi S, Mazhandu Z, Sillanpaa M, Kaushik A, Mashifana T (2023) Efficient detection and treatment of pharmaceutical contaminants to produce clean water for better health and environmental. J Clean Prod 387:135798

    Article  CAS  Google Scholar 

  2. Papagiannaki D, Belay MH, Gonçalves NPF, Robotti E, Bianco-Prevot A, Binetti R, Calza P (2022) From monitoring to treatment, how to improve water quality: the pharmaceuticals case. Chem Eng J Adv 10:100245

    Article  CAS  Google Scholar 

  3. Abbas KK, AbdulkadhimAl-Ghaban AMH, Rdewi EH (2022) Synthesis of a novel ZnO/TiO2-nanorod MXene heterostructured nanophotocatalyst for the removal pharmaceutical ceftriaxone sodium from aqueous solution under simulated sunlight. J Environ Chem Eng 10:108111

    Article  CAS  Google Scholar 

  4. Rashki O, Rezaei MR, Sayadi MH (2022) The high photocatalytic efficiency and stability of the Z-scheme CaTiO3/WS2 heterostructure for photocatalytic removal of 17α-ethinyl estradiol in aqueous solution. J Photochem Photobiol A: Chem 43:114169

    Article  Google Scholar 

  5. Bilal M, Rizwan K, Adeel M, Barceló D, Awad YA, Iqbal HMN (2022) Robust strategies to eliminate endocrine disruptive estrogens in water resources. Envir Poll 306:119373

    Article  CAS  Google Scholar 

  6. Bouyarmane H, El Hanbali I, El Karbane M, Rami A, Saoiabi A, Saoiabi S, Masse S, Coradin T, Laghzizil A (2015) Parameters influencing ciprofloxacin, ofloxacin, amoxicillin and sulfamethoxazole retention by natural and converted calcium phosphates. J Hazard Mater 291:38–44

    Article  CAS  PubMed  Google Scholar 

  7. Sang D, Cimetiere N, Giraudet S, Tan R, Wolbert D, Le Cloirec P (2022) Adsorption-desorption of organic micropollutants by powdered activated carbon and coagulant in drinking water treatment. J Water Process Eng 49:103190

    Article  Google Scholar 

  8. Zhai C, Chen Y, Huang X, Isaev AB, Zhu M (2022) Recent progress on single-atom catalysts in advanced oxidation processes for water treatment. Environ Functional Matre 1:2019–2229

    Google Scholar 

  9. García-Araya JF, Beltrán FJ, Aguinaco A (2010) Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J Chem Technol Biotechnol 85:798–804

    Article  Google Scholar 

  10. Elmolla ES, Chaudhuri M (2010) Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination 256:43–47

    Article  CAS  Google Scholar 

  11. Al-Hajji LA, Ismail AA, Bumajdad A, Alsaidi M, Ahmed SA, Al-Hazza A, Ahmed N (2021) Photodegradation of powerful five estrogens collected from waste water treatment plant over visible-light-driven Au/TiO2 photocatalyst. Environ Technol Innov 24:101958

    Article  CAS  Google Scholar 

  12. Munguti LK, Dejene FB, Muthee DK (2023) High photodegradation performance of ZnO nanoparticles supported on porous Zeolite Na-A: effects of ZnO loading. Mater Chem Phys 295:127063

    Article  CAS  Google Scholar 

  13. Mao K, Li Y, Zhang H, Zhang W, Yan W (2013) Photocatalytic Degradation of 17α-ethinylestradiol and inactivation of escherichia coli using Ag-Modified TiO2 nanotube arrays. Clean-Soil Air Water 41:455462

    Article  Google Scholar 

  14. Islam SU, Bairagi S, Kamali MR (2023) Review on green biomass-synthesized metallic nanoparticles and composites and their photocatalytic water purification applications: progress and perspectives. Chem Eng J Adv 14:100460

    Article  Google Scholar 

  15. Arevalo-Perez JC, Cruz-Romero D, Cordero-García A, Lobato-García CE, Aguilar-Elguezabal A, Torres-Torres JG (2020) Photodegradation of 17 α-methyltestosterone using TiO2 -Gd3+ and TiO2-Sm3+, Photocatalysts and simulated solar radiation as an activation source. Chemosphere 249:126497

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen THA, Doan VD, Tran AV, Nguyen VC, Vasseghian Y (2021) Green synthesis of Nb-doped ZnO nanocomposite for photocatalytic degradation of tetracycline antibiotic under visible light. Mater Lett 308:131129

    Article  Google Scholar 

  17. Yashni G, Al-Gheethi A, Mohamed R, Hossain MS, Kamil AF, Shanmugan VA (2021) Photocatalysis of xenobiotic organic compounds in greywater using zinc oxide nanoparticles: a critical review. Water Environ J 35:190–217

    Article  CAS  Google Scholar 

  18. Bettini S, Pagano R, Valli D, Ingrosso C, Roeffaers M, Hofkens J, Giancane G, Valli L (2023) ZnO nanostructures based piezo-photocatalytic degradation enhancement of steroid hormones. Surf Interfaces 36:102581

    Article  CAS  Google Scholar 

  19. Elsayed MS, Ahmed IA, Bader DMD, Hassan AF (2022) Green synthesis of nano zinc oxide/nanohydroxyapatite composites using date palm pits extract and eggshells: adsorption and photocatalytic degradation of methylene blue. Nanomaterials 12:49

    Article  CAS  Google Scholar 

  20. Fatta-Kassinos D, Vasquez MI, Kümmerer K (2011) Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes-Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85:693–709

    Article  CAS  PubMed  Google Scholar 

  21. Shabbir S, Faheem M, Dar AA, Ali N, Kerr PG, Yu ZG, Li Y, Frei S, Albasher G, Gilfedder BS (2022) Enhanced periphyton biodegradation of endocrine disrupting hormones and microplastic: Intrinsic reaction mechanism, influential humic acid and microbial community structure elucidation. Chemosphere 293:133515

    Article  CAS  PubMed  Google Scholar 

  22. Go AD, dela Rosa FM, Camacho DH, Punzalan ER (2022) Dataset on photocatalytic degradation of Levofloxacin using hydroxyapatite photocatalyst: optimization by response surface methodology. Data Brief 42:108219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bouyarmane H, El Bekkali C, Labrag J, Es-Saidi I, Bouhnik O, Abdelmoumen H, Laghzizil A, Nunzi JM, Robert D (2021) Photocatalytic degradation of emerging antibiotic pollutants in waters by TiO2/Hydroxyapatite nanocomposite materials. Surf Interfaces 24:101155

    Article  CAS  Google Scholar 

  24. El Bekkali C, Bouyarmane H, El Karbane M, Masse S, Saoiabi A, Coradin T, Laghzizil A (2018) Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics. Colloids Surf A 539:364–370

    Article  Google Scholar 

  25. Go AD, dela Rosa FM, Camacho DH, Punzalan ER (2024) Photocatalytic degradation of levofloxacin using ZnO/hydroxyapatite nanocomposite: optimization using response surface methodology. Chem Data Coll 50:101126

    CAS  Google Scholar 

  26. He C, Yin Z, He J, Lv J, Wang C (2022) Occurrence and photodegradation of typical steroid hormones in surface water of urban lakes in Wuhan, China. J Environ Chem Eng 10:108602

    Article  CAS  Google Scholar 

  27. Martins de Barros R, Lissalde S, Guibal R, Guibaud G (2022) Development of a multi-hormone analysis method by LC-MS/MS for environmental water application using diffusive gradient in thin films. Talanta 243:12339

    Article  Google Scholar 

  28. Ribeiro TSS, Mourão LC, Souza GBM, Dias IM, Andrade LA, Souza PLM, Cardozo-Filho L, Oliveira GR, Oliveira SB, Alonso CG (2021) Treatment of hormones in wastewater from the pharmaceutical industry by continuous flow supercritical water technology. J Environ Chem Eng 9:106095

    Article  CAS  Google Scholar 

  29. Wang L, Cui X, Xu J, Wang G, Guo M, Yu L, Yang K, Luo Z, Zeng A, Chen G, Zhang J, Fu Q (2022) Highly efficient amino-functionalized aluminum-based metal organic frameworks mesoporous nanorods for selective extraction of hydrocortisone in pharmaceutical wastewater. J Pharm Biomed Anal 219:11493

    Article  Google Scholar 

  30. Escudeiro de Oliveira M, Barroso BL, De Almeida J, Moraes MLL, Rodrigues CA (2020) Photoelectrocatalytic degradation of 17α-ethinylestradiol and estrone under UV and visible light using nanotubular oxide arrays grown on Ti-0.5wt%W. Environ Res 191:110044

    Article  CAS  PubMed  Google Scholar 

  31. El Asri S, Laghzizil A, Saoiabi A, Alaoui A, El Abbassi K, M’Hamdi R, Coradin T (2009) A novel process for the fabrication of nanoporous apatites from Moroccan phosphate rock. Colloids Surf A 35:73–78

    Article  Google Scholar 

  32. Joint Committee on Powder Diffraction Standards (JCPDS) (2003) Powder diffraction files; international Centre for diffraction data (ICDD): Newton Square, PA, USA

  33. Hazrah KS, Antao SM (2022) Apatite, Ca10(PO4)6(OH, F, Cl)2: structural variations natural solid solutions, intergrowths, and zoning. Minerals 12:527

    Article  CAS  Google Scholar 

  34. Bahdod A, El Asri S, Saoiabi A, Coradin T, Laghzizil A (2009) Adsorption of phenol from an aqueous solution by selected apatite adsorbents: kinetic process and impact of the surface properties. Water Res 43:313–318

    Article  CAS  PubMed  Google Scholar 

  35. El Bekkali C, Labrag J, Oulguidoum A, Chamkhi I, Laghzizil A, Nunzi JM, Robert D, Aurag J (2022) Porous ZnO/hydroxyapatite nanomaterials with effective photocatalytic andnantibacterial activities for the degradation of antibiotics. Nanotechnol Environ Eng 7:1

    Article  Google Scholar 

  36. Lin K, Pan J, Chen Y, Cheng R, Xu X (2009) Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J Hazard Mater 161:231–240

    Article  CAS  PubMed  Google Scholar 

  37. Syed Z, Sogani M, Kumar A, Rajvanshi J, Sharma G, Sonu K (2022) Biodegradation of synthetic estrogen using bioelectrochemical system and degradation pathway analysis through Quadrupole-time-of-flight-mass spectrometry. Biores Technol 349:126857

    Article  CAS  Google Scholar 

  38. Feng Y, Ren N (2010) Kinetic degradation model and estrogenicity changes of EE2 (17α-ethinylestradiol) in aqueous solution by UV and UV/H2O2 technology. J Hazard Mater 181:1127–1133

    Article  PubMed  Google Scholar 

  39. Pan Z, Stemmler EA, Cho HJ, Fan W, LeBlanc LA, Pattersone HH, Amirbahman A (2014) Photocatalytic degradation of 17-ethinylestradiol (EE2) in the presence of TiO2-doped zeolite. J Hazard Mater 279:17–25

    Article  CAS  PubMed  Google Scholar 

  40. Schneider JT, Nagata N, Peralta-Zamora P (2018) Suspended and immobilized TiO2 photocatalytic degradation of Estrogens: Potential for application in wastewater treatment processes. J Braz Chem Soc 29:380–389

    Google Scholar 

  41. Luo L, Longa J, Zhao S, Dai J, Ma L, Wang H, Xiaa L, Shu L, Jiang F (2019) Effective visible-light-driven photocatalytic degradation of17-ethynylestradiol by crosslinked CdS nano-rod/TiO2(B) nano-belt composite. Process Saf Environ Prot 130:77–85

    Article  CAS  Google Scholar 

  42. Han J, Liu Y, Singhal N, Wang L, Gao W (2012) Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. Chem Eng J 213:150–162

  43. Shi X, Wu S, Yang C, Li L, Li H, Jiang F, Luo L (2023) Understanding the synergistic adsorption-photocatalytic degradation of EE2 using ZnO/Bi2MoO6{010}. J Alloys Compd 968:172118

  44. Menon NG, George L, Tatiparti SS, Mukherji S (2021) Efficacy and reusability of mixed-phase TiO2–ZnO nanocomposites for the removal of estrogenic effects of 17β-Estradiol and 17α-Ethinylestradiol from water. J Environ Manag 288:112340

  45. Luo L, Meng D, He L, Wang X, Xia L, Pan X, Jiang F, Wang H, Dai J (2022) Photocatalytic activation of peroxydisulfate by a new porous g-C3N4/reduced graphene oxide/TiO2 nanobelts composite for efficient degradation of 17α-ethinylestradiol. Chem Eng J 446:137325

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Laghzizil.

Ethics declarations

Ethics Approval

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest/Competing interests

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Bekkali, C., Abbadi, M., Labrag, J. et al. Enhancing the Photocatalytic Degradation of Selected Estrogenic Hormone Using ZnO/Hydroxyapatite Nanocomposite. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00982-7

Keywords

Navigation