Skip to main content
Log in

Understanding the Factors Affecting the Adsorption of Surface-Active Agents onto Reservoir Rock in Chemical Enhanced Oil Recovery Applications: A Comprehensive Review

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This comprehensive review delves into the recent advancements in the study of surfactant adsorption, a crucial factor influencing the efficiency of chemical enhanced oil recovery (cEOR) applications across various oil types. By integrating findings from the latest literature, we shed light on the dynamic interactions between surfactants and diverse adsorbents including sandstone, carbonate, and shale sandstone. This review highlights the nuanced understanding of how operational variables such as initial surfactant concentration, pH, adsorbent dose, contact time, temperature, along with adsorption kinetics, isotherm models, thermodynamics, and the presence of competing ions, contribute to the adsorption process. A novel synthesis of recent studies reveals that the Langmuir and pseudo-second-order models continue to accurately describe the equilibrium and kinetics of adsorption in most scenarios, with the adsorption process predominantly exothermic. Additionally, this review introduces cutting-edge insights into the molecular-level mechanisms underpinning surfactant adsorption, emphasizing the role of crude oil components, initial wettability of reservoir rocks, and the intrinsic properties of the rock itself. By summarizing these contemporary findings, the review aims to provide a deeper understanding of the key parameters affecting the retention of surface-active agents on various adsorbents, thereby proposing new avenues for optimizing surfactant flooding in cEOR. This enhanced focus on recent contributions to the field distinguishes our review from existing literature, offering fresh perspectives on the optimization of surfactant use in oil recovery processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Belhaj AF, Elraies KA, Mahmood SM et al (2020) The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. J Pet Explor Prod Technol 10:125–137

    Article  CAS  Google Scholar 

  2. Laben AB, Kayiem HHA, Alameen MA et al (2022) Experimental study on the performance of emulsions produced during ASP flooding. J Pet Explor Prod Technol 12:1797–1809

    Article  Google Scholar 

  3. Belhaj AF, Elraies KA, Mahmood SM, et al (2020) A comprehensive surfactant performance assessment in Harsh Malaysian reservoir conditions. In: Offshore Technology Conference Asia. OTC, p D012S001R067

  4. Belhaj AF, Elraies KA, Sarma HK, et al (2021) Surfactant partitioning and adsorption in chemical EOR: the neglected phenomenon in porous media. In: SPE Asia Pacific Oil and Gas Conference and Exhibition. SPE, p D031S023R006

  5. Belhaj A, Singh N, Sarma H (2022) Critical Assessment of the Hybrid Impact of Surfactants on Modified Salinity Water Flooding. In: SPE Canadian Energy Technology Conference. OnePetro

  6. Curbelo FDS, Santanna VC, Neto ELB et al (2007) Adsorption of nonionic surfactants in sandstones. Colloids Surf A Physicochem Eng Asp 293:1–4

    Article  CAS  Google Scholar 

  7. Amirianshoja T, Junin R, Idris AK, Rahmani O (2013) A comparative study of surfactant adsorption by clay minerals. J Pet Sci Eng 101:21–27

    Article  CAS  Google Scholar 

  8. Schramm LL (2000) Surfactants: fundamentals and applications in the petroleum industry. Cambridge University Press

    Book  Google Scholar 

  9. Mwangi PM (2010) An experimental study of surfactant enhanced waterflooding

  10. Hama SM, Manshad AK, Ali JA (2023) Review of the application of natural surfactants in enhanced oil recovery: state-of-the-art and perspectives. Energy Fuels 37:10061–10086

    Article  CAS  Google Scholar 

  11. Ball B, Fuerstenau DW (1971) Thermodynamics and adsorption behaviour in the quartz/aqueous surfactant system. Discuss Faraday Soc 52:361–371

    Article  Google Scholar 

  12. Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interface Sci 110:75–95

    Article  CAS  PubMed  Google Scholar 

  13. Haloi S, Saikia MD, Gogoi SB, et al (2021) Aggregation and static adsorption behaviour of Achromobacter sp. TMB1 produced rhamnolipids on sandstone core in relation to microbial enhanced oil recovery. J Pet Sci Eng 205:108831

  14. Belhaj AF, Elraies KA, Shuhili JA, et al (2020) Surfactant adsorption evaluation in the presence of crude oil at high reservoir temperature condition. In: Offshore Technology Conference Asia. OTC, p D011S008R001

  15. Baviere M, Ruaux E, Defives D (1993) Sulfonate retention by kaolinite at high pH-effect of inorganic anions. SPE Reserv Eng 8:123–127

    Article  CAS  Google Scholar 

  16. Dick SG, Fuerstenau DW, Healy TW (1971) Adsorption of alkylbenzene sulfonate (ABS) surfactants at the alumina-water interface. J Colloid Interface Sci 37:595–602

    Article  CAS  Google Scholar 

  17. Fuerstenau DW, Wakamatsu T (1975) Effect of pH on the adsorption of sodium dodecane-sulphonate at the alumina/water interface. Faraday Discuss Chem Soc 59:157–168

    Article  CAS  Google Scholar 

  18. Wu SH, Pendleton P (2001) Adsorption of anionic surfactant by activated carbon: effect of surface chemistry, ionic strength, and hydrophobicity. J Colloid Interface Sci 243:306–315

    Article  CAS  Google Scholar 

  19. Belhaj AF, Fakir SH, Singh N, Sarma HK (2023) A comparative enhanced oil recovery study between low-salinity water and hybrid surfactant process for a carbonate reservoir. In: SPE Western Regional Meeting. SPE, p D041S013R007

  20. Fakir SH, Belhaj AF, Singh N, Sarma HK (2023) Beneficial advantages of nanoparticle-enhanced surfactant-assisted low salinity waterflooding process. In: SPE Western Regional Meeting. SPE, p D031S012R004

  21. Hussien OS, Elraies KA, Almansour A et al (2019) Experimental study on the use of surfactant as a fracking fluid additive for improving shale gas productivity. J Pet Sci Eng 183:106426

    Article  Google Scholar 

  22. Daryasafar N, Borazjani O, Daryasafar A (2018) Simulation of kinetic behavior of natural surfactants adsorption using a new robust approach. J Chemom:e3031

  23. Khan AR, Al-Waheab IR, Al-Haddad A (1996) A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution. Environ Technol 17:13–23

    Article  CAS  Google Scholar 

  24. Jovanovic DS (1969) Physical adsorption of gases. I. Isotherms for monolayer and multilayer adsorption. Kolloid-Zeitschrift Zeitschrift Fur Polym 235:1203

  25. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  26. Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16:931–937

    Article  CAS  Google Scholar 

  27. Hossain MA, Ngo HH, Guo WS, Nguyen TV (2012) Palm oil fruit shells as biosorbent for copper removal from water and wastewater: experiments and sorption models. Bioresour Technol 113:97–101

    Article  CAS  PubMed  Google Scholar 

  28. Arabloo M, Ghazanfari MH, Rashtchian D (2015) Spotlight on kinetic and equilibrium adsorption of a new surfactant onto sandstone minerals: a comparative study. J Taiwan Inst Chem Eng 50:12–23

    Article  CAS  Google Scholar 

  29. Temkin MJ, Pyzhev V (1940) Recent modifications to Langmuir isotherms

  30. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  31. Elboughdiri N, Ferkous H, Rouibah K, et al (2024) Comprehensive investigation of cu2+ adsorption from wastewater using olive-waste-derived adsorbents: experimental and molecular insights. Int J Mol Sci 25

  32. Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena. Wiley

    Book  Google Scholar 

  33. Green DW, Willhite GP (1998) Enhanced oil recovery. In: Henry L (ed) Doherty Memorial Fund of AIME. Society of Petroleum Engineers Richardson, TX

  34. Behrens EJ (2013) Investigation of loss of surfactants during enhanced oil recovery applications-adsorption of surfactants onto clay materials

  35. Atta DY, Negash BM, Yekeen N, Habte AD (2021) A state-of-the-art review on the application of natural surfactants in enhanced oil recovery. J Mol Liq 321:114888

    Article  CAS  Google Scholar 

  36. Sofla SJD, Sharifi M, Sarapardeh AH (2016) Toward mechanistic understanding of natural surfactant flooding in enhanced oil recovery processes: the role of salinity, surfactant concentration and rock type. J Mol Liq 222:632–639

    Article  Google Scholar 

  37. Holmberg K (2001) Natural surfactants. Curr Opin Colloid Interface Sci 6:148–159

    Article  CAS  Google Scholar 

  38. Yusuf M, Wathon MH, Thanasaksukthawee V et al (2021) Adsorption of saponin natural surfactant on carbonate rock and comparison to synthetic surfactants: an enhanced oil recovery prospective. Energy Fuels 35:11193–11202

    Article  CAS  Google Scholar 

  39. Siva M, Ramamurthy K, Dhamodharan R (2017) Development of a green foaming agent and its performance evaluation. Cem Concr Compos 80:245–257

    Article  CAS  Google Scholar 

  40. Oleszek W, Hamed A (2010) Saponin-based surfactants. Surfact Renew Resour 1:239–251

    Google Scholar 

  41. Hostettmann K, Marston A (2005) Saponins. Cambridge University Press

    Google Scholar 

  42. Sahu SS, Gandhi ISR, Khwairakpam S (2018) State-of-the-art review on the characteristics of surfactants and foam from foam concrete perspective. J Inst Eng Ser A 99:391–405

    Article  CAS  Google Scholar 

  43. Singh N, Halliday HL, Stevens TP, et al (2015) Comparison of animal‐derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev

  44. Moya F, Maturana A (2007) Animal-derived surfactants versus past and current synthetic surfactants: current status. Clin Perinatol 34:145–177

    Article  PubMed  Google Scholar 

  45. Kahn MC, Anderson GJ, Anyan WR, Hall SB (1995) Phosphatidylcholine molecular species of calf lung surfactant. Am J Physiol Cell Mol Physiol 269:L567–L573

    Article  CAS  Google Scholar 

  46. Ramanathan R (2009) Animal-derived surfactants: where are we? The evidence from randomized, controlled clinical trials. J Perinatol 29:S38–S43

    Article  CAS  PubMed  Google Scholar 

  47. Halliday HL (1997) Synthetic or natural surfactants. Acta Pædiatrica 86:233–237

    Article  CAS  PubMed  Google Scholar 

  48. Curstedt T, Calkovska A, Johansson J (2013) New generation synthetic surfactants. Neonatology 103:327–330

    Article  CAS  PubMed  Google Scholar 

  49. Johnson P, Trybala A, Starov V, Pinfield VJ (2021) Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv Colloid Interface Sci 288:102340

    Article  CAS  PubMed  Google Scholar 

  50. Jahan R, Bodratti AM, Tsianou M, Alexandridis P (2020) Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci 275:102061

    Article  CAS  PubMed  Google Scholar 

  51. Tmáková L, Sekretár S, Schmidt Š (2016) Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities. Chem Pap 70:188–196

    Article  Google Scholar 

  52. (2020) The Classification of Surfactants. In: Surfactant Science and Technology. pp 17–59

  53. Myers D (2020) Surfactant science and technology. Wiley

    Book  Google Scholar 

  54. Yokoi T, Yoshitake H, Tatsumi T (2004) Synthesis of mesoporous silica by using anionic surfactant. In: Studies in Surface Science and Catalysis. Elsevier, pp 519–527

  55. Salager J-L (2002) Surfactants types and uses. FIRP Bookl 300

  56. Saxena N, Mandal A (2022) Surfactants and their types. In: Natural Surfactants. Springer, pp 3–10

  57. Menger FM, Littau CA (1993) Gemini surfactants: a new class of self-assembling molecules. J Am Chem Soc 115:10083–10090

    Article  CAS  Google Scholar 

  58. Bhadani A, Shrestha RG, Koura S et al (2014) Self-aggregation properties of new ester-based gemini surfactants and their rheological behavior in the presence of cosurfactant—monolaurin. Colloids Surfaces A Physicochem Eng Asp 461:258–266

    Article  CAS  Google Scholar 

  59. Li Y, Wang X, Wang Y (2006) Comparative studies on interactions of bovine serum albumin with cationic gemini and single-chain surfactants. J Phys Chem B 110:8499–8505

    Article  CAS  PubMed  Google Scholar 

  60. Boublia A, Guezzout Z, Haddaoui N, et al (2023) The curious case of polyaniline-graphene nanocomposites: a review on their application as exceptionally conductive and gas sensitive materials. Crit Rev Solid State Mater Sci:1–25

  61. Guezzout Z, Boublia A, Haddaoui N (2023) Enhancing thermal and mechanical properties of polypropylene—nitrile butadiene rubber nanocomposites through graphene oxide functionalization. J Polym Res. https://doi.org/10.1007/s10965-023-03585-x

    Article  Google Scholar 

  62. Raffa P, Wever DAZ, Picchioni F, Broekhuis AA (2015) Polymeric surfactants: synthesis, properties, and links to applications. Chem Rev 115:8504–8563

    Article  CAS  PubMed  Google Scholar 

  63. Raffa P, Broekhuis AA, Picchioni F (2016) Polymeric surfactants for enhanced oil recovery: A review. J Pet Sci Eng 145:723–733

    Article  CAS  Google Scholar 

  64. Cao Y, Li H (2002) Interfacial activity of a novel family of polymeric surfactants. Eur Polym J 38:1457–1463

    Article  CAS  Google Scholar 

  65. Liu Z, Zhao G, Brewer M et al (2021) Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery. Adv Colloid Interface Sci 294:102467. https://doi.org/10.1016/j.cis.2021.102467

    Article  CAS  PubMed  Google Scholar 

  66. Somasundaran P, Zhang L (2006) Adsorption of surfactants on minerals for wettability control in improved oil recovery processes. J Pet Sci Eng 52:198–212

    Article  CAS  Google Scholar 

  67. Joonaki E, Gahrooei HRE, Ghanaatian S (2016) Experimental study on adsorption and wettability alteration aspects of a new chemical using for enhanced oil recovery in carbonate oil reservoirs. J Unconv Oil Gas Resour 15:11–21

    Article  Google Scholar 

  68. Yan J, Plancher H, Morrow NR (1997) Wettability changes induced by adsorption of asphaltenes. SPE Prod Facil 12:259–266

    Article  CAS  Google Scholar 

  69. Perera MSA (2023) A review of underground hydrogen storage in depleted gas reservoirs: Insights into various rock-fluid interaction mechanisms and their impact on the process integrity. Fuel 334:126677

    Article  CAS  Google Scholar 

  70. Liu Z, Zhao G, Brewer M et al (2021) Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2021.102467

    Article  PubMed  Google Scholar 

  71. Muherei MA, Junin R (2009) Equilibrium adsorption isotherms of anionic, nonionic surfactants and their mixtures to shale and sandstone. Mod Appl Sci 3:158

    Article  CAS  Google Scholar 

  72. Ahmadi MA, Shadizadeh SR (2012) Adsorption of novel nonionic surfactant and particles mixture in carbonates: enhanced oil recovery implication. Energy Fuels 26:4655–4663

    Article  CAS  Google Scholar 

  73. Ahmadi MA, Shadizadeh SR (2013) Experimental investigation of adsorption of a new nonionic surfactant on carbonate minerals. Fuel 104:462–467

    Article  CAS  Google Scholar 

  74. Bera A, Kumar T, Ojha K, Mandal A (2013) Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies. Appl Surf Sci 284:87–99

    Article  CAS  Google Scholar 

  75. Park S, Lee ES, Sulaiman WRW (2015) Adsorption behaviors of surfactants for chemical flooding in enhanced oil recovery. J Ind Eng Chem 21:1239–1245

    Article  CAS  Google Scholar 

  76. Zargartalebi M, Kharrat R, Barati N (2015) Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel 143:21–27

    Article  CAS  Google Scholar 

  77. Ahmadi MA, Shadizadeh SR (2015) Experimental investigation of a natural surfactant adsorption on shale-sandstone reservoir rocks: static and dynamic conditions. Fuel 159:15–26

    Article  CAS  Google Scholar 

  78. Barati A, Najafi A, Daryasafar A et al (2016) Adsorption of a new nonionic surfactant on carbonate minerals in enhanced oil recovery: experimental and modeling study. Chem Eng Res Des 105:55–63

    Article  CAS  Google Scholar 

  79. Moslemizadeh A, Dehkordi AF, Barnaji MJ et al (2016) Novel bio-based surfactant for chemical enhanced oil recovery in montmorillonite rich reservoirs: adsorption behavior, interaction impact, and oil recovery studies. Chem Eng Res Des 109:18–31

    Article  CAS  Google Scholar 

  80. Yekeen N, Manan MA, Idris AK, Samin AM (2017) Influence of surfactant and electrolyte concentrations on surfactant Adsorption and foaming characteristics. J Pet Sci Eng 149:612–622

    Article  CAS  Google Scholar 

  81. Saha R, Uppaluri RVS, Tiwari P (2017) Effect of mineralogy on the adsorption characteristics of surfactant—reservoir rock system. Colloids Surf A Physicochem Eng Asp 531:121–132

    Article  CAS  Google Scholar 

  82. Radnia H, Nazar ARS, Rashidi A (2017) Experimental assessment of graphene oxide adsorption onto sandstone reservoir rocks through response surface methodology. J Taiwan Inst Chem Eng

  83. Tagavifar M, Jang SH, Sharma H et al (2018) Effect of pH on adsorption of anionic surfactants on limestone: experimental study and surface complexation modeling. Colloids Surf A Physicochem Eng Asp 538:549–558

    Article  CAS  Google Scholar 

  84. Lebouachera SEI, Chemini R, Khodja M et al (2018) Experimental investigations of SDS adsorption on the Algerian rock reservoir: chemical enhanced oil recovery case. Res Chem Intermed 44:7665–7690

    Article  CAS  Google Scholar 

  85. Jian G, Puerto M, Wehowsky A et al (2018) Characterizing adsorption of associating surfactants on carbonates surfaces. J Colloid Interface Sci 513:684–692

    Article  CAS  PubMed  Google Scholar 

  86. Belhaj AF, Elraies KA, Alnarabiji MS et al (2021) Experimental investigation, binary modelling and artificial neural network prediction of surfactant adsorption for enhanced oil recovery application. Chem Eng J 406:127081. https://doi.org/10.1016/j.cej.2020.127081

    Article  CAS  PubMed  Google Scholar 

  87. Kalam S, Abu-Khamsin SA, Patil S et al (2023) Adsorption reduction of a gemini surfactant on carbonate rocks using formic acid: static and dynamic conditions. Fuel 345:128166

    Article  CAS  Google Scholar 

  88. Abbas AH, Abd Alsaheb RA, Abdullah JK (2023) Comparative study of natural chemical for enhanced oil recovery: focus on extraction and adsorption at quartz sand surface. Petroleum 9:83–93. https://doi.org/10.1016/j.petlm.2022.01.007

    Article  Google Scholar 

  89. Dang CTQ, Chen ZJ, Nguyen NTB, et al (2011) Development of isotherm polymer/surfactant adsorption models in chemical flooding. In: SPE Asia Pacific oil and gas conference and exhibition. Society of Petroleum Engineers

  90. Somasundaran P, Hanna HS (1985) Adsorption/desorption of sulfonate by reservoir rock minerals in solutions of varying sulfonate concentrations. Soc Pet Eng J 25:343–350

    Article  CAS  Google Scholar 

  91. ElMofty O (2012) Surfactant enhanced oil recovery by wettability alteration in sandstone reservoirs

  92. Mushtaq M, Tan IM, Rashid U et al (2015) Effect of pH on the static adsorption of foaming surfactants on Malaysian sandstone. Arab J Geosci 8:8539–8548

    Article  CAS  Google Scholar 

  93. Li P, Ishiguro M (2016) Adsorption of anionic surfactant (sodium dodecyl sulfate) on silica. Soil Sci plant Nutr 62:223–229

    Article  CAS  Google Scholar 

  94. Liu Z, Hedayati P, Sudhölter EJR et al (2020) Adsorption behavior of anionic surfactants to silica surfaces in the presence of calcium ion and polystyrene sulfonate. Colloids Surf A Physicochem Eng Asp 602:125074

    Article  CAS  Google Scholar 

  95. Rashid R, Shafiq I, Iqbal MJ et al (2021) Synergistic effect of NS co-doped TiO2 adsorbent for removal of cationic dyes. J Environ Chem Eng 9:105480

    Article  CAS  Google Scholar 

  96. Barati-Harooni A, Najafi-Marghmaleki A, Tatar A, Mohammadi AH (2016) Experimental and modeling studies on adsorption of a nonionic surfactant on sandstone minerals in enhanced oil recovery process with surfactant flooding. J Mol Liq 220:1022–1032

    Article  CAS  Google Scholar 

  97. Elias SD, Rabiu AM, Oyekola O, Seima B (2016) Adsorption characteristics of surfactants on different petroleum reservoir materials

  98. Sen GS, Bhattacharyya KG (2008) Immobilization of Pb (II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J Environ Manage 87:46–58

    Article  Google Scholar 

  99. Hanna HS, Somasundaran P (1979) Equilibration of kaolinite in aqueous inorganic and surfactant solutions. J Colloid Interface Sci 70:181–191

    Article  CAS  Google Scholar 

  100. Sastry NV, Dave PN (1999) Adsorption behavior of surfactant-polyacrylamide mixtures with kaolin. J Surfactants Deterg 2:459–472

    Article  CAS  Google Scholar 

  101. Mao J, Wang D, Yang X, et al (2018) Adsorption of surfactant on stratum rocks: Exploration of low adsorption surfactants for reservoir stimulation. J Taiwan Inst Chem Eng

  102. Lebouachera SEI, Chemini R, Khodja M et al (2019) Experimental design methodology as a tool to optimize the adsorption of new surfactant on the Algerian rock reservoir: cEOR applications. Eur Phys J Plus 134:436. https://doi.org/10.1140/epjp/i2019-12821-9

    Article  CAS  Google Scholar 

  103. Belhaj AF, Elraies KA, Shuhili JA et al (2022) Static adsorption evaluation for anionic-nonionic surfactant mixture on sandstone in the presence of crude oil at high reservoir temperature condition. SPE Reserv Eval Eng 25:261–272

    Article  CAS  Google Scholar 

  104. Abbad B, Lounis A (2014) Removal of methylene blue from colored effluents by adsorption onto ZnAPSO-34 nanoporous material. Desalin Water Treat 52:7766–7775

    Article  CAS  Google Scholar 

  105. Shukla A, Zhang Y-H, Dubey P et al (2002) The role of sawdust in the removal of unwanted materials from water. J Hazard Mater 95:137–152

    Article  CAS  PubMed  Google Scholar 

  106. Sarma GK, Sen GS, Bhattacharyya KG (2016) Adsorption of crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension. J Environ Manage 171:1–10

    Article  CAS  PubMed  Google Scholar 

  107. Li W, Dai C, Ouyang J et al (2018) Adsorption and retention behaviors of heterogeneous combination flooding system composed of dispersed particle gel and surfactant. Colloids Surf Physicochem Eng Asp 538:250–261

    Article  CAS  Google Scholar 

  108. Srivastava V, Sharma YC, Sillanpää M (2015) Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceram Int 41:6702–6709

    Article  CAS  Google Scholar 

  109. Iftekhar S, Ramasamy DL, Srivastava V, et al (2018) Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: a critical review. Chemosphere

  110. Moumeni O, Mehri M, Kerkour R et al (2023) Experimental and detailed DFT/MD simulation of α-aminophosphonates as promising corrosion inhibitor for XC48 carbon steel in HCl environment. J Taiwan Inst Chem Eng 147:104918. https://doi.org/10.1016/j.jtice.2023.104918

    Article  CAS  Google Scholar 

  111. Boulechfar C, Ferkous H, Delimi A, et al (2023) Corrosion Inhibition of Schiff Base and their Metal Complexes with [Mn (II), Co (II) and Zn (II)]: Experimental and Quantum Chemical Studies. J Mol Liq:121637

  112. Schwuger MJ (1990) M. Rosen: Surfactants and Interfacial Phenomena, John Wiley & Sons Ltd, New York, Chichester, Brisbane, Toronto, Singapore 1989. 431 Seiten, Preis:£ 36.85. Berichte der Bunsengesellschaft für Phys Chemie 94:796

  113. Sheng J (2011) Modern chemical enhance oil recovery: theory and practice. Gulf Professional

  114. Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley & Sons

    Google Scholar 

  115. Wiśniewska M (2012) The temperature effect on the adsorption mechanism of polyacrylamide on the silica surface and its stability. Appl Surf Sci 258:3094–3101

    Article  Google Scholar 

  116. Juang L-C, Wang C-C, Lee C-K (2006) Adsorption of basic dyes onto MCM-41. Chemosphere 64:1920–1928

    Article  CAS  PubMed  Google Scholar 

  117. Zendehboudi S, Ahmadi MA, Rajabzadeh AR et al (2013) Experimental study on adsorption of a new surfactant onto carbonate reservoir samples—application to EOR. Can J Chem Eng 91:1439–1449

    Article  CAS  Google Scholar 

  118. Hashemian S, Ardakani MK, Salehifar H (2013) Kinetics and thermodynamics of adsorption methylene blue onto tea waste/CuFe2O4 composite. Am J Anal Chem 4:1

    Article  Google Scholar 

  119. ShamsiJazeyi H, Verduzco R, Hirasaki GJ (2014) Reducing adsorption of anionic surfactant for enhanced oil recovery: Part II. Applied aspects. Colloids Surf A Physicochem Eng Asp 453:168–175

    Article  CAS  Google Scholar 

  120. Lebouachera SEI, Chemini R, Khodja M, et al Experimental investigations of SDS adsorption on the Algerian rock reservoir: chemical enhanced oil recovery case. Res Chem Intermed:1–26

  121. Drach M, Jabłoński J, Narkiewicz-Michałek J, Szymula M (2010) Co-adsorption of surfactants and propyl gallate on the hydrophilic oxide surfaces. Appl Surf Sci 256:5444–5448

    Article  CAS  Google Scholar 

  122. Yu B, Zhang Y, Shukla A et al (2001) The removal of heavy metals from aqueous solutions by sawdust adsorption—removal of lead and comparison of its adsorption with copper. J Hazard Mater 84:83–94

    Article  CAS  PubMed  Google Scholar 

  123. Ajmal M, Khan AH, Ahmad S, Ahmad A (1998) Role of sawdust in the removal of copper (II) from industrial wastes. Water Res 32:3085–3091

    Article  CAS  Google Scholar 

  124. Anirudhan TS, Sreedhar MK (1998) Adsorption thermodynamics of Co (II) on polysulphide treated sawdust

  125. Raji C, Shubha KP, Anirudhan TS (1997) Use of chemically modified sawdust in the removal of Pb (II) ions from aqueous media. Indian J Environ Health 39:230–238

    CAS  Google Scholar 

  126. Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191

    Article  CAS  Google Scholar 

  127. Austad T, RezaeiDoust A, Puntervold T (2010) Chemical mechanism of low salinity water flooding in sandstone reservoirs. In: SPE improved oil recovery symposium. Society of Petroleum Engineers

  128. Lv W, Bazin B, Ma D et al (2011) Static and dynamic adsorption of anionic and amphoteric surfactants with and without the presence of alkali. J Pet Sci Eng 77:209–218

    Article  CAS  Google Scholar 

  129. Budhathoki M, Barnee SHR, Shiau B-J, Harwell JH (2016) Improved oil recovery by reducing surfactant adsorption with polyelectrolyte in high saline brine. Colloids Surf Physicochem Eng Asp 498:66–73

    Article  CAS  Google Scholar 

  130. Ahmadi MA, Shadizadeh SR (2018) Spotlight on the new natural surfactant flooding in carbonate rock samples in low salinity condition. Sci Rep 8:10985

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ferkous H, Sedik A, Delimi A et al (2023) A comparative study of novel synthesized sulfamide compounds: electrochemical, morphological, XPS, and theoretical investigations on copper corrosion inhibition in 1.0 M HCl. J Mol Liq. https://doi.org/10.1016/j.molliq.2023.123781

    Article  Google Scholar 

  132. Somasundaran P, Grieves RB (1975) Advances in interfacial phenomena of particulate/solution/gas systems; applications to flotation research. Aiche Symp Ser 71(150):191

    Google Scholar 

  133. Zhang R, Somasundaran P (2006) Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interface Sci 123:213–229

    Article  PubMed  Google Scholar 

  134. Somasundaran P, Huang L (2000) Adsorption/aggregation of surfactants and their mixtures at solid–liquid interfaces. Adv Colloid Interface Sci 88:179–208

    Article  CAS  PubMed  Google Scholar 

  135. Peck AS, Wadsworth ME (1964) Infrared study of the depression effect of fluoride, sulphate and chloride on the chemisorption of oleate on fluorite and barite. In: 7th International Mineral Processing Congress, New York. pp 259–267

  136. French RO, Wadsworth ME, Cook MA, Cutler IB (1954) The quantitative application of infrared spectroscopy to studies in surface chemistry. J Phys Chem 58:805–811

    Article  CAS  Google Scholar 

  137. Gaudin AM, Fuerstenau DW (1955) Streaming potential studies. Quartz flotation with anionic collectors. Min Eng 7

  138. Zhang L, Somasundaran P, Mielczarski J, Mielczarski E (2002) Adsorption mechanism of n-dodecyl-β-d-maltoside on alumina. J Colloid Interface Sci 256:16–22

    Article  CAS  Google Scholar 

  139. James RO, Healy TW (1972) Adsorption of hydrolyzable metal ions at the oxide—water interface. III. A thermodynamic model of adsorption. J Colloid Interface Sci 40:65–81

    Article  CAS  Google Scholar 

  140. Das D, Panigrahi S, Misra PK, Nayak A (2008) Effect of organized assemblies. Part 4. Formulation of highly concentrated coal−water slurry using a natural surfactant. Energy Fuels 22:1865–1872

    Article  CAS  Google Scholar 

  141. Kalam S, Abu-Khamsin SA, Kamal MS, Patil S (2021) Surfactant adsorption isotherms: a review. ACS Omega 6:32342–32348. https://doi.org/10.1021/acsomega.1c04661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Adak A, Bandyopadhyay M, Pal A (2005) Adsorption of anionic surfactant on alumina and reuse of the surfactant-modified alumina for the removal of crystal violet from aquatic environment. J Environ Sci Heal 40:167–182

    Article  Google Scholar 

  143. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II Liquids J Am Chem Soc 39:1848–1906

    Article  CAS  Google Scholar 

  144. Temkin MI (1941) Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules. Zh Fiz Chim 15:296–332

    CAS  Google Scholar 

  145. Hill K, Rhode O (1999) Sugar-based surfactants for consumer products and technical applications. Eur J Lipid Sci Technol 101:25–33

    CAS  Google Scholar 

  146. Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024

    Article  CAS  Google Scholar 

  147. Hameed BH, Mahmoud DK, Ahmad AL (2008) Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. J Hazard Mater 158:65–72

    Article  CAS  PubMed  Google Scholar 

  148. Sips R (1948) Combined form of Langmuir and Freundlich equations. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  149. Toth J (1971) State equation of the solid-gas interface layers. Acta chim hung 69:311–328

    CAS  Google Scholar 

  150. Kapoor A, Yang RT (1989) Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Sep Purif 3:187–192

    Article  CAS  Google Scholar 

  151. Freundlich H (1907) Über die adsorption in lösungen. Zeitschrift für Phys Chemie 57:385–470

    CAS  Google Scholar 

  152. Schmitt M, Fernandes CP, Wolf FG et al (2015) Characterization of Brazilian tight gas sandstones relating permeability and Angstrom-to micron-scale pore structures. J Nat Gas Sci Eng 27:785–807

    Article  CAS  Google Scholar 

  153. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  154. Jovanović DS (1969) Physical adsorption of gases. Kolloid-Zeitschrift und Zeitschrift für Polym 235:1214–1225

    Article  Google Scholar 

  155. Hassan HZ, Mohamad AA, Alyousef Y, Al-Ansary HA (2015) A review on the equations of state for the working pairs used in adsorption cooling systems. Renew Sustain Energy Rev 45:600–609

    Article  Google Scholar 

  156. Ahmadi MA, Shadizadeh SR (2013) Induced effect of adding nano silica on adsorption of a natural surfactant onto sandstone rock: experimental and theoretical study. J Pet Sci Eng 112:239–247

    Article  CAS  Google Scholar 

  157. Kamal MS, Sultan AS, Hussein IA (2015) Screening of amphoteric and anionic surfactants for cEOR applications using a novel approach. Colloids Surf A Physicochem Eng Asp 476:17–23

    Article  CAS  Google Scholar 

  158. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. K Sven Vetenskapsakademiens Handl 24:1–39

    Google Scholar 

  159. Ho Y-S (2006) Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res 40:119–125

    Article  CAS  PubMed  Google Scholar 

  160. Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J 44:265–268

    Article  CAS  Google Scholar 

  161. Pérez-Marín AB, Zapata VM, Ortuno JF et al (2007) Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard Mater 139:122–131

    Article  PubMed  Google Scholar 

  162. Cestari AR, Vieira EFS, Pinto AA, Lopes ECN (2005) Multistep adsorption of anionic dyes on silica/chitosan hybrid: 1. Comparative kinetic data from liquid-and solid-phase models. J Colloid Interface Sci 292:363–372

    Article  CAS  PubMed  Google Scholar 

  163. Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20:228–238

    Article  CAS  Google Scholar 

  164. Kalam S, Abu-Khamsin SA, Kamal MS, Patil S (2021) A review on surfactant retention on rocks: mechanisms, measurements, and influencing factors. Fuel 293:120459

    Article  CAS  Google Scholar 

  165. Ojinnaka CM, Ajienka JA, Abayeh OJ et al (2016) Formulation of best-fit hydrophile/lipophile balance-dielectric permittivity demulsifiers for treatment of crude oil emulsions. Egypt J Pet 25:565–574

    Article  Google Scholar 

  166. Belhaj AF, Aris BM, Shuhli J, Elraies KA et al (2020) Partitioning behaviour of novel surfactant mixture for high reservoir temperature and high salinity conditions. Energy 198:117319. https://doi.org/10.1016/j.energy.2020.117319

    Article  CAS  Google Scholar 

  167. Al-Shalabi EW, Sepehrnoori K (2016) A comprehensive review of low salinity/engineered water injections and their applications in sandstone and carbonate rocks. J Pet Sci Eng 139:137–161

    Article  CAS  Google Scholar 

  168. ShamsiJazeyi H, Miller CA, Wong MS et al (2014) Polymer-coated nanoparticles for enhanced oil recovery. J Appl Polym Sci. https://doi.org/10.1002/app.40576

    Article  Google Scholar 

  169. Belhaj AF, Elraies KA, Alnarabiji MS et al (2019) Experimental investigation of surfactant partitioning in Pre-CMC and Post-CMC regimes for enhanced oil recovery application. Energies. https://doi.org/10.3390/en12122319

    Article  Google Scholar 

  170. Kesarwani H, Saxena A, Mandal A, Sharma S (2021) Anionic/nonionic surfactant mixture for enhanced oil recovery through the investigation of adsorption, interfacial, rheological, and rock wetting characteristics. Energy Fuels 35:3065–3078

    Article  CAS  Google Scholar 

  171. Mao J, Wang D, Yang X et al (2019) Adsorption of surfactant on stratum rocks: exploration of low adsorption surfactants for reservoir stimulation. J Taiwan Inst Chem Eng 95:424–431

    Article  CAS  Google Scholar 

  172. Isah A, Arif M, Hassan A et al (2022) Fluid–rock interactions and its implications on EOR: critical analysis, experimental techniques and knowledge gaps. Energy Rep 8:6355–6395

    Article  Google Scholar 

  173. Boublia A, El S, Lebouachera I, Haddaoui N (2022) State - of - the - art review on recent advances in polymer engineering : modeling and optimization through response surface methodology approach. Springer, Berlin Heidelberg

    Google Scholar 

  174. Belhaj AF, Elraies KA, Alnarabiji MS et al (2019) Experimental investigation of surfactant partitioning in pre-CMC and post-CMC regimes for enhanced oil recovery application. Energies 12:2319

    Article  CAS  Google Scholar 

  175. Sander R, Pan Z, Connell LD (2017) Laboratory measurement of low permeability unconventional gas reservoir rocks: a review of experimental methods. J Nat Gas Sci Eng 37:248–279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of a project supported by petroleum company SONATRACH-Algeria that we would to thank its contribution for providing additives and reservoirs rocks.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seif El Islam Lebouachera or Nadjib Drouiche.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebouachera, S.E.I., Balamane-Zizi, O., Boublia, A. et al. Understanding the Factors Affecting the Adsorption of Surface-Active Agents onto Reservoir Rock in Chemical Enhanced Oil Recovery Applications: A Comprehensive Review. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00931-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00931-4

Keywords

Navigation