Skip to main content
Log in

Physico-Chemical Characterization of a New Hybrid Material (NH4)2(C6H18N2)[H2P2Mo5O23]·H2O: Quantum Chemical and Comparative Studies with Homologous (C6H18N2)2[H2P2Mo5O23]·H2O

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The synthesis and solid-state characterization of a new hybrid polyoxometalate of formula (NH4)2(C6H18N2)[H2P2Mo5O23]·H2O (POM 2) were carried out by using X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), UV–Vis and fluorescence techniques. It crystallized in a triclinic system with space group P-1, a = 10.1868 (17), b = 10.730(2), c = 14.380(3) Å, α = 100.840(6), β = 95.868(6), γ = 114.934(6)°, and Z = 1. Analysis of the crystal structure reveals that the Strandberg anions [H2P2Mo5O23]4− are interconnected into a 3D supramolecular inorganic framework through hydrogen bonding interactions involving water molecules, ammonium cations, and the terminal oxygen atoms of polyanionic units. The organic cations are hosted within the anionic framework to balance its negative charge. Density functional theory (DFT) calculations were performed to optimize the geometry of the novel compound and its homologous compound (C6H18N2)2[H2P2Mo5O23]·H2O (POM 1), in order to evaluate HOMO–LUMO energy parameters, molecular electrostatic potential (MEP) and non linear optical (NLO) properties. The calculated results reveal good consistency with the experimental structure. The calculated first-order hyperpolarizability of POM 1 and POM 2 are 8.71 and 15.87 times that of urea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the article and its supplementary materials.

References

  1. Rejab MRBM, Hamdan MHBM, Quanjin M, Siregar JP, Bachtiar D, Muchlis Y (2020) Historical development of hybrid materials. Encyclopedia of Renewable and Sustainable Materials; Elsevier: Amsterdam, 445–455

  2. Das PP, Chaudhary V, Kumar Singh R, Singh D, Aditya Bachchan A (2021) Advancement in hybrid materials, its applications and future challenges: a review. Mater Today Proc 47:3794–3801. https://doi.org/10.1016/j.matpr.2021.03.009

    Article  CAS  Google Scholar 

  3. Coronado E, Gimenezsaiz C, Gomezgarcia C (2005) Recent advances in polyoxometalate-containing molecular conductors. Coord Chem Rev 249:1776–1796. https://doi.org/10.1016/j.ccr.2005.02.017

    Article  CAS  Google Scholar 

  4. Sun J, Abednatanzi S, Van Der Voort P, Liu Y-Y, Leus K (2020) POM@MOF hybrids: synthesis and applications. Catalysts 10:578. https://doi.org/10.3390/catal10050578

    Article  CAS  Google Scholar 

  5. Berzelius J (1826) The preparation of the phosphomolybdate ion [PMo12O40]3-. Ann Phys 82:369–392. https://doi.org/10.1002/andp.18260820402

    Article  Google Scholar 

  6. Liu J-X, Zhang X-B, Li Y-L, Huang S-L, Yang G-Y (2020) Polyoxometalate functionalized architectures. Coord Chem Rev 414:213260. https://doi.org/10.1016/j.ccr.2020.213260

    Article  CAS  Google Scholar 

  7. Huang B, Yang D-H, Han B-H (2020) Application of polyoxometalate derivatives in rechargeable batteries. J Mater Chem A 8:4593–4628. https://doi.org/10.1039/C9TA12679A

    Article  CAS  Google Scholar 

  8. Cao Y, Chen Q, Shen C, He L (2019) Polyoxometalate-based catalysts for CO2 conversion. Molecules 24:2069. https://doi.org/10.3390/molecules24(11)2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Misra A, Kozma K, Streb C, Nyman M (2020) Beyond charge balance: counter-cations in polyoxometalate chemistry. Angew Chemie Int Ed 59:596–612. https://doi.org/10.1002/anie.201905600

    Article  CAS  Google Scholar 

  10. Wu P, Wang Y, Chen W, Hu X, Huang B, Xiao Z (2021) Structural and magnetical studies of mixed-valence hexavanadate hybrids: how organic ligands affect the magnetism of polyoxometalates? Inorg Chem 60:4347–4351. https://doi.org/10.1021/acs.inorgchem.1c00044

    Article  CAS  PubMed  Google Scholar 

  11. Baaalla N, Ammari Y, Hlil EK, Abid S, Masrour R, Benyoussef A, El Kenz A (2021) The novel material based on strandberg-type hybrid complex (C6H10N2)2[Co(H2O)4P2Mo5O23].6H2O: experimental and simulations investigation on electronic, optical, and magnetocaloric properties. Ceram Int 47:2338–2346. https://doi.org/10.1016/j.ceramint.2020.09.076

    Article  CAS  Google Scholar 

  12. Lu B, Li S, Pan J, Zhang L, Xin J, Chen Y, Tan X (2020) pH-controlled assembly of five new organophosphorus strandberg-type cluster-based coordination polymers for enhanced electrochemical capacitor performance. Inorg Chem 59:1702–1714. https://doi.org/10.1021/acs.inorgchem.9b02858

    Article  CAS  PubMed  Google Scholar 

  13. Jin H-J, Zhou B-B, Yu Y, Zhao Z-F, Su Z-H (2011) Inorganic–organic hybrids constructed from heteropolymolybdate anions and copper–organic fragments: syntheses, structures and properties. CrystEngComm 13:585–590. https://doi.org/10.1039/C004063K

    Article  CAS  Google Scholar 

  14. Dong Y, Xu X, Zhou G, Miao H, Hu G, Xu Y (2015) Three novel polyoxoanion-supported compounds: confinement of polyoxoanions in Ni-containing rigid concave surfaces with enhanced NLO properties. Dalt Trans 44:18347–18353. https://doi.org/10.1039/C5DT02710A

    Article  CAS  Google Scholar 

  15. Yu K, Zhou B-B, Yu Y, Su Z-H, Wang H, Wang C, Wang C (2012) Influence of pH and organic ligands on the supramolecular network based on molybdenum phosphate/strontium chemistry. Dalt Trans 41(33):10014. https://doi.org/10.1039/c2dt3039k

    Article  CAS  Google Scholar 

  16. Vilà-Nadal L, Cronin L (2017) Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nat Rev Mater 2:17054. https://doi.org/10.1038/natrevmats.2017.54

    Article  ADS  CAS  Google Scholar 

  17. Bensiradj NEH, Dekhira A, Zouaghi N, Ouamerali O (2020) DFT and TDDFT study of chemical reactivity and spectroscopic properties of M(TePh)2 [TMEDA] M=Zn, Cd, and Hg complexes. Struct Chem 31:1493–1503. https://doi.org/10.1007/s11224-020-01509-9

    Article  CAS  Google Scholar 

  18. Zhu S, Xing C, Xu W, Jin G, Li Z (2004) Halogen bonding and hydrogen bonding coexist in driving self-assembly process. Cryst Growth Des 4:53–56. https://doi.org/10.1021/cg0300275

    Article  CAS  Google Scholar 

  19. Li Y, Cui W, Zhu G, Qiu S, Fang Q, Wang C (2004) Hydrothermal synthesis and characteristic of [C6N2H18]2[Mo5O15(HPO4)2] center dot H2O. Chem J Chin Univ 24(3):394–397

    Google Scholar 

  20. Uehara K, Oishi T, Hirose T, Mizuno N (2013) Synthesis and characterization of molecular hexagons and rhomboids and subsequent encapsulation of Keggin-Type polyoxometalates by molecular hexagons. Inorg Chem 52:11200–11209. https://doi.org/10.1021/ic401428v

    Article  CAS  PubMed  Google Scholar 

  21. McArdle S, Endo S, Aspuru-Guzik A, Benjamin SC, Yuan X (2020) Quantum computational chemistry. Rev Mod Phys. https://doi.org/10.1103/RevModPhys.92.015003

    Article  MathSciNet  Google Scholar 

  22. Reiher M, Wiebe N, Svore KM, Wecker D, Troyer M (2017) Elucidating reaction mechanisms on quantum computers. Proc Natl Acad Sci 114:7555–7560. https://doi.org/10.1073/pnas.1619152114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao Y, Romero J, Aspuru-Guzik A (2018) Potential of quantum computing for drug discovery. IBM J Res Dev. https://doi.org/10.1147/JRD.2018.2888987

    Article  Google Scholar 

  24. López X, Carbó JJ, Bo C, Poblet JM (2012) (2012) Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chem Soc Rev 41:7537. https://doi.org/10.1039/c2cs35168d

    Article  CAS  PubMed  Google Scholar 

  25. Harchani A, Haddad A (2021) Theoretical study of a hybrid organic-inorganic heteropolyoxometalate compound. Crystallogr Reports 66:949–953. https://doi.org/10.1134/S1063774521060134

    Article  ADS  CAS  Google Scholar 

  26. López X, Graaf C, Maestre JM, Bénard M, Rohmer M-M, Bo C, Poblet JM (2005) Highly reduced polyoxometalates: ab initio and DFT study of [PMo8V4O40(VO)4]5-. J Chem Theory Comput 1:856–861. https://doi.org/10.1021/ct050040z

    Article  CAS  PubMed  Google Scholar 

  27. Zhang G, Wang F, Tubul T, Baranov M, Leffler N, Neyman A, Poblet JM, Weinstock IA (2022) Complexed semiconductor cores activate hexaniobate ligands as nucleophilic sites for solar-light reduction of CO2 by water. Angew Chemie Int. https://doi.org/10.1002/anie.202213162

    Article  Google Scholar 

  28. Poblet JM, López X (2005) Computational Methods: Heteropolyoxoanions. Inorg. Chem, Encycl. https://doi.org/10.1002/0470862106.ia632

    Book  Google Scholar 

  29. Ammari Y, Baaalla N, Hlil EK, Abid S (2020) Structure, optical and magnetic properties of a novel homometallic coordination polymers: Experimental and Computational studies. Sci Rep 10:1316. https://doi.org/10.1038/s41598-020-58176-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mahmood A, Abdullah MI, Nazar MF (2014) Quantum chemical designing of novel organic non-linear optical compounds. Bull Korean Chem Soc 35:1391–1396. https://doi.org/10.5012/bkcs.2014.35.5.1391

    Article  CAS  Google Scholar 

  31. Mahmood A, Abdullah MI, Khan SU-D (2015) Enhancement of nonlinear optical (NLO) properties of indigo through modification of auxiliary donor, donor and acceptor. Spectrochim Acta Part A Mol Biomol Spectrosc 139:425–430. https://doi.org/10.1016/j.saa.2014.12.038

    Article  ADS  CAS  Google Scholar 

  32. Riaz S, Hussain R, Adnan M, Khan MU, Muhammad S, Yaqoob J, Alvi MU, Khalid M, Irshad Z, Ayub K (2022) Ab initio study of two-dimensional cross-shaped non-fullerene acceptors for efficient organic solar cells. ACS Omega 7:10638–10648. https://doi.org/10.1021/acsomega.2c00285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang T, Guan W, Wen S, Ma T, Yan L, Su Z (2015) Theoretical exploration to the cation effect on the second-order nonlinear optical properties of Strandberg-type polyoxometalates. J Theor Comput Chem 14:1550007. https://doi.org/10.1142/S0219633615500078

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2015) SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  ADS  CAS  Google Scholar 

  35. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71(2015):3–8. https://doi.org/10.1107/S2053229614024218

    Article  ADS  CAS  Google Scholar 

  36. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani Barone GV, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2016) Gaussian 16, Revision A03., Gaussian Inc., Wallingford CT.

  38. Dennington RD, Keith TA, Millam JM (2008) GaussView 5.0.8. Gaussian Inc

  39. Chen Z, Yang J (2006) The B3LYP hybrid density functional study on solids. Front Phys China 1:339–343. https://doi.org/10.1007/s11467-006-0026-8

    Article  ADS  Google Scholar 

  40. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  PubMed  Google Scholar 

  41. Harchani A, Haddad A (2018) Application of Hirshfeld surfaces, semiempirical calculations and molecular dynamics analysis to study the intermolecular interactions, reactivity and dynamics of two polyoxometalate compounds. Theor Chem Acc 137:90. https://doi.org/10.1007/s00214-018-2279-z

    Article  CAS  Google Scholar 

  42. Jelsch C, Ejsmont K, Huder L (2014) The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 1:119–128. https://doi.org/10.1107/S2052252514003327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Demir S, Tinmaz F, Dege N, Ilhan IO (2016) Vibrational spectroscopic studies, NMR, HOMO–LUMO, NLO and NBO analysis of 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1 H -pyrazole with use X-ray diffractions and DFT calculations. J Mol Struct 1108:637–648. https://doi.org/10.1016/j.molstruc.2015.12.057

    Article  ADS  CAS  Google Scholar 

  44. Rauhut G, Pulay P (1995) Transferable scaling factors for density functional derived vibrational force fields. J Phys Chem 99:3093–3100. https://doi.org/10.1021/j100010a019

    Article  CAS  Google Scholar 

  45. Stipdonk MJV, Basu P, Dille SA, Gibson JK, Berden G, Oomens J (2014) Infrared multiple photon dissociation spectroscopy of a gas-phase oxo-molybdenum complex with 1,2-dithiolene ligands. J Phys Chem A 118:5407–5418. https://doi.org/10.1021/jp503222v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harchani A, Haddad A (2015) Synthesis, structure and property of a new diphosphopentamolybdates [C7H7N2]2[H2P2Mo5O23]0.5·3.5H2O. J Clust Sci 26:1645–1653. https://doi.org/10.1007/s10876-015-0864-z

    Article  CAS  Google Scholar 

  47. Ammari Y, Abid S, Naifer KH (2020) Synthesis, crystal structure and optical properties of Anderson-type heteropolyanion with cobalt cations. Appl Phys A 126:101. https://doi.org/10.1007/s00339-020-3280-7

    Article  ADS  CAS  Google Scholar 

  48. Murphy A (2007) Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol Energy Mater Sol Cells 91:1326–1337. https://doi.org/10.1016/j.solmat.2007.05.005

    Article  CAS  Google Scholar 

  49. Miyake Y, Tada H (2004) Photocatalytic degradation of methylene blue with metal-doped mesoporous Titania under irradiation of white light. J Chem Eng JAPAN 37:630–635. https://doi.org/10.1252/jcej.37.630

    Article  CAS  Google Scholar 

  50. Milosevic M, Berets SL (2002) A review of FT-IR diffuse reflection sampling considerations. Appl Spectrosc Rev 37:347–364. https://doi.org/10.1081/ASR-120016081

    Article  ADS  CAS  Google Scholar 

  51. Li X-M, Chen Y-G, Su C, Zhou S, Tang Q, Shi T (2013) Functionalized pentamolybdodiphosphate-based inorganic-organic hybrids: synthesis, structure, and properties. Inorg Chem 52:11422–11427. https://doi.org/10.1021/ic401726a

    Article  CAS  PubMed  Google Scholar 

  52. Wei C-X, Chen J-X, Huang Y-B, Lan T-Y, Li Z-S, Zhang W-J, Zhang Z-C (2006) Syntheses, structures and properties of two molybdenum phosphates [(H20P8Mov12CdO62) (C4H14N3)22C4H13N3·8H2O and [(H2P2MoVI5 O23) (C4H14N3)(C4H15N3)(H3O)]·3H2O. J Mol Struct 798:117–125. https://doi.org/10.1016/j.molstruc.2006.03.070

    Article  ADS  CAS  Google Scholar 

  53. Ammari Y, Dhahri E, Rzaigui M, Hlil EK, Abid S (2016) Synthesis, structure and physical properties of an hybrid compound based on strandberg type polyoxoanions and copper cations. J Clust Sci 27:1213–1227. https://doi.org/10.1007/s10876-016-0993-z

    Article  CAS  Google Scholar 

  54. Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044. https://doi.org/10.1021/cr950202r

    Article  CAS  PubMed  Google Scholar 

  55. Karthick T, Balachandran V, Perumal S, Nataraj A (2011) Rotational isomers, vibrational assignments, HOMO–LUMO, NLO properties and molecular electrostatic potential surface of N-(2 bromoethyl) phthalimide. J Mol Struct 1005:202–213. https://doi.org/10.1016/j.molstruc.2011.08.051

    Article  ADS  CAS  Google Scholar 

  56. AlRabiah H, Muthu S, Al-Omary F, Al-Tamimi A.-M, Raja M, Muhamed R.R, El-Emam A.A.-R, (2017) Molecular structure, vibrational spectra, NBO, Fukui function, HOMO-LUMO analysis and molecular docking study of 6-[(2-methylphenyl)sulfanyl]-5-propylpyrimidine-2,4(1H,3H)-dione, Maced. J Chem Chem Eng https://doi.org/10.20450/mjcce.2017.1001.

  57. O’boyle N.M., Tenderholt A.L., (2008) Langner K.M., cclib: A library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845. https://doi.org/10.1002/jcc.20823

    Article  CAS  PubMed  Google Scholar 

  58. Mehmood H, Khalid M, Haroon M, Akhtar T, Ashfaq M, Tahir MN, Khan IMU, M, Braga A.A.C., Woodward S, (2021) Synthesis, characterization and DFT calculated properties of electron-rich hydrazinylthiazoles: Experimental and computational synergy. J Mol Struct 1245:131043. https://doi.org/10.1016/j.molstruc.2021.131043

    Article  CAS  Google Scholar 

  59. el Guermi IN, H, Saal A, (2023) Theoretical investigation of structural parameters, reactivity behavior, and thermodynamic properties of Anderson polyoxometalate (POM). Struct Chem 34:1231–1240. https://doi.org/10.1007/s11224-022-02088-7

    Article  CAS  Google Scholar 

  60. Rachedi KO, Bahadi R, Aissaoui M, BenHadda T, Belhani B, Bouzina A, Berredjem M (2020) DFT Study, POM analyses and molecular docking of novel oxazaphosphinanes: identification of antifungal pharmacophore site indones. J Chem 20:440

    Google Scholar 

  61. Harchani A, Kučeráková M, Dušek M, Haddad A (2017) Synthesis, characterization, Hirshfeld surface and theoretical properties of (C7H10N)4[H2P2Mo5O23]·H2O. J Chem Sci 129:1539–1547. https://doi.org/10.1007/s12039-017-1361-8

    Article  CAS  Google Scholar 

  62. Cassidy C, Halbout JM, Donaldson W, Tang CL (1979) Nonlinear optical properties of urea. Opt Commun 29:243–246. https://doi.org/10.1016/0030-4018(79)90027-0

    Article  ADS  CAS  Google Scholar 

  63. Janjua MRSA, Khan MU, Bashir B, Iqbal MA, Song Y, Naqvi SAR, Khan ZA (2012) Effect of π-conjugation spacer (CC) on the first hyperpolarizabilities of polymeric chain containing polyoxometalate cluster as a side-chain pendant: A DFT study. Comput Theor Chem 994:34–40. https://doi.org/10.1016/j.comptc.2012.06.011

    Article  CAS  Google Scholar 

  64. Asokan P, Kalainathan S (2017) Bulk crystal growth, optical, electrical, thermal, and third order NLO properties of 2-[4-(Diethylamino)benzylidene]malononitrile (DEBM) single crystal. J Phys Chem C 121:22384–22395. https://doi.org/10.1021/acs.jpcc.7b07805

    Article  CAS  Google Scholar 

  65. Ben M’leh C, Brandán S.A., Issaoui N, Roisnel T, Marouani H, (2018) Synthesis, molecular structure, vibrational and theoretical studies of a new non-centrosymmetric organic sulphate with promising NLO properties. J Mol Struct 1171:771–785. https://doi.org/10.1016/j.molstruc.2018.06.041

    Article  ADS  CAS  Google Scholar 

  66. Gatfaoui S, Issaoui N, Roisnel T, Marouani H (2021) Synthesis, experimental and computational study of a non-centrosymmetric material 3-methylbenzylammonium trioxonitrate. J Mol Struct 1225:129132. https://doi.org/10.1016/j.molstruc.2020.129132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professors Josef Maria Poblet Rius and Maria Besora Bonet, from the Department of Physical and Inorganic Chemistry, Rovira I Virgili University. Their precious help was essential; without this, density functional theory (DFT) calculations could not have been performed.

Funding

This research work was achieved without any financial support from external funding /organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Abid.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2422 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hichri, A., Roisnel, T. & Abid, S. Physico-Chemical Characterization of a New Hybrid Material (NH4)2(C6H18N2)[H2P2Mo5O23]·H2O: Quantum Chemical and Comparative Studies with Homologous (C6H18N2)2[H2P2Mo5O23]·H2O. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00915-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00915-4

Keywords

Navigation