Skip to main content
Log in

Synthesize of Copper Nanocomposite Mediated Human Urine: Estimated of their Antibacterial Activity

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The author presents an efficient method for the synthesis of copper nanocomposites (CuNC) using human urine. The role of human urine on the decomposition of copper nitrate was investigated. X-ray diffraction (XRD) results indicate the presence of compounds of calcium copper oxide (CaCuO2), calcium carbonate (CaCO3), copper (I) sulphide (Cu2S), and sodium copper oxide (NaCuO) in the sample. The energy-dispersive X-ray spectroscopy (EDS) results show that the elements copper (Cu), oxygen (O), and sulphur (S) have their own peaks. Calcium (Ca) and nitrogen (N) also have secondary peaks. Field-emission scanning electron microscope (FESEM) results show non-uniform structures like clusters of nanoparticles (NPs) with different nanodiameters. The optical analysis shows a clear absorption peak at 325 nm with a direct optical energy gap of 2.85 eV, hence being similar to the manner in which copper oxides behave. The antibacterial activity results confirm that CuNC has a high inhibitory effect against Streptococcus pyogenes and Proteus mirabilis. The maximum zone of inhibition against Proteus mirabilis is 22 mm, and against Streptococcus pyogenes is 26 mm. The current work is complementary to previous work in the field of employing the effect of human urine in the synthesis of NPs or NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. Jabir MS, Nayef UM, Abdul KWK (2019) Polyethylene glycol-functionalized magnetic (Fe3O4) nanoparticles: a novel DNA-mediated antibacterial agent. Nano Biomed Eng 11(1):18–27

    Article  CAS  Google Scholar 

  2. Naz S, Gul A, Zia M, Javed R (2023) Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl Microbiol Biotechnol 107(4):1039–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khashan KS, Sulaiman GM, Hussain SA, Marzoog TR, Jabir MS (2020) Synthesis, characterization and evaluation of anti-bacterial, anti-parasitic and anti-cancer activities of aluminum-doped zinc oxide nanoparticles. J Inorg Organomet Polym Mater 30(9):3677–3693

    Article  CAS  Google Scholar 

  4. Schlesinger ME, Sole KC, Davenport WG, Alvear GR (2021) Extractive metallurgy of copper. Elsevier

    Google Scholar 

  5. Tamilvanan A, Balamurugan K, Ponappa K, Kumar BM (2014) Copper nanoparticles: synthetic strategies, properties and multifunctional application. Int J Nanosci 13(02):1430001

    Article  Google Scholar 

  6. Markin AV, Markina NE (2019) Experimenting with plasmonic copper nanoparticles to demonstrate color changes and reactivity at the nanoscale. J Chem Educ 96(7):1438–1442

    Article  CAS  Google Scholar 

  7. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  8. Antonijevic M, Petrovic M (2008) Copper corrosion inhibitors. A review. Int J Electrochem Sci 3(1):1–28

    Article  CAS  Google Scholar 

  9. Rubilar O, Rai M, Tortella G, Diez MC, Seabra AB, Durán N (2013) Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotech Lett 35:1365–1375

    Article  CAS  Google Scholar 

  10. Knauth P, Schoonman J (2006) Nanostructured materials: selected synthesis methods, properties and applications. Springer Science & Business Media

    Google Scholar 

  11. Crisan MC, Teodora M, Lucian M (2021) Copper nanoparticles: synthesis and characterization, physiology, toxicity and antimicrobial applications. Appl Sci 12(1):141

    Article  Google Scholar 

  12. Liu Y, Liu M, Swihart MT (2017) Plasmonic copper sulfide-based materials: a brief introduction to their synthesis, doping, alloying, and applications. J Phys Chem C 121(25):13435–13447

    Article  CAS  Google Scholar 

  13. Li G, Li X, Zhang Z (2011) Preparation methods of copper nanomaterials. Progress Chem 23(8):1644

    CAS  Google Scholar 

  14. Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7(4):425–443

    Article  CAS  PubMed  Google Scholar 

  15. Abd-Elkader OH, Deraz N (2013) Synthesis and characterization of new copper based nanocomposite. Int J Electrochem Sci 8:8614–8622

    Article  CAS  Google Scholar 

  16. Tonelli D, Scavetta E, Gualandi I (2019) Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors 19(5):1186

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohammed SA, Khashan KS, Jabir MS, Abdulameer FA, Sulaiman GM, Al-Omar MS, Mohammed HA, Hadi AA, Khan RA (2022) Copper oxide nanoparticle-decorated carbon nanoparticle composite colloidal preparation through laser ablation for antimicrobial and antiproliferative actions against breast cancer cell line, MCF-7. BioMed Res Int 2022:1–13

    Article  Google Scholar 

  18. Wu Y, Han S, Li Y, Shen W (2022) Fabrication of monodisperse gold-copper nanocubes and AuCu-cuprous sulfide heterodimers by a step-wise polyol reduction. J Colloid Interface Sci 626:136–145

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Rahmah MI (2021) Preparation of silver chloride nanoparticles using human urine. Appl Nanosci 11(10):2611–2615

    Article  ADS  CAS  Google Scholar 

  20. Sarigul N, Korkmaz F, Kurultak İ (2019) A new artificial urine protocol to better imitate human urine. Sci Rep 9(1):20159

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirchmann H, Pettersson S (1994) Human urine-chemical composition and fertilizer use efficiency. Fertil Res 40:149–154

    Article  Google Scholar 

  22. Viskari E-L, Grobler G, Karimäki K, Gorbatova A, Vilpas R, Lehtoranta S (2018) Nitrogen recovery with source separation of human urine—preliminary results of its fertiliser potential and use in agriculture. Front Sustain Food Syst 2:32

    Article  Google Scholar 

  23. Bahjat HH, Ismail RA, Sulaiman GM, Jabir MS (2021) Magnetic field-assisted laser ablation of titanium dioxide nanoparticles in water for anti-bacterial applications. J Inorg Organomet Polym Mater 31:3649–3656

    Article  CAS  Google Scholar 

  24. Mohammed MK, Mohammad M, Jabir MS, Ahmed D (2020) Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes. IOP Conf Ser: Mater Sci Eng 757:012028

    Article  CAS  Google Scholar 

  25. Sabry RS, Al-Haidarie YK, Kudhier MA (2016) Synthesis and photocatalytic activity of TiO 2 nanoparticles prepared by sol–gel method. J Sol-Gel Sci Technol 78:299–306

    Article  CAS  Google Scholar 

  26. John KI, Adenle AA, Adeleye AT, Onyia IP, Amune-Matthews C, Omorogie MO (2021) Unravelling the effect of crystal dislocation density and microstrain of titanium dioxide nanoparticles on tetracycline removal performance. Chem Phys Lett 776:138725

    Article  Google Scholar 

  27. Kireev P (1978) Semiconductor physics. MIR Publishers, Moscow

    Google Scholar 

  28. Zhang Y, Wang W, Yao H (2022) Urea-based nitrogen fertilization in agriculture: a key source of N2O emissions and recent development in mitigating strategies. Arch Agron Soil Sci 14:1–16

    Google Scholar 

  29. Ma C, Ban T, Yu H, Li Q, Li X, Jiang W, Xie J (2019) Urea addition promotes the metabolism and utilization of nitrogen in cucumber. Agronomy 9(5):262

    Article  CAS  Google Scholar 

  30. Yu Y, Zhang L, Wang J, Yang Z, Long M, Hu N, Zhang Y (2012) Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation. Nanoscale Res Lett 7(1):1–6

    Article  Google Scholar 

  31. Khan J, Siddiq M, Akram B, Ashraf MA (2018) In-situ synthesis of CuO nanoparticles in P (NIPAM-co-AAA) microgel, structural characterization, catalytic and biological applications. Arab J Chem 11(6):897–909

    Article  CAS  Google Scholar 

  32. Logpriya S, Bhuvaneshwari V, Vaidehi D, SenthilKumar R, Nithya Malar R, Pavithra Sheetal B, Amsaveni R, Kalaiselvi M (2018) Preparation and characterization of ascorbic acid-mediated chitosan–copper oxide nanocomposite for anti-microbial, sporicidal and biofilm-inhibitory activity. J Nanostruct Chem 8(3):301–309

    Article  CAS  Google Scholar 

  33. Hidayat T, Dewi R, Hamzah Y (2021) Effect of holding time on optical structure properties of Ba (Zr0.5Ti0.5) O3 thin film using sol–gel method. Sci, Technol Commun J 1(2):59–66

    Google Scholar 

  34. Bilal A, Kasi JK, Kasi AK, Bokhari M, Ahmed S, Ali SW (2022) Environment friendly synthesis of nickel ferrite nanoparticles using Brassica oleracea var capitate (green cabbage) as a fuel and their structural and magnetic characterizations. Mater Chem Phys 290:126483

    Article  CAS  Google Scholar 

  35. Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25(7):1512–1521

    Article  CAS  PubMed  Google Scholar 

  36. Jose GP, Santra S, Mandal SK, Sengupta TK (2011) Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnol 9:1–8

    Article  Google Scholar 

  37. Cheloni G, Marti E, Slaveykova VI (2016) Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat Toxicol 170:120–128

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z, Zhang Y, Qu X, Chen F, Zhao X (2023) Self-assembled nanostructure of copper hydrogen phosphate with catalytic and antibacterial activity. Ceram Int 49:20168–20173

    Article  CAS  Google Scholar 

  39. Tejeda C, Villegas M, Steuer P, Iranzo EC, González N, Ramirez-Reveco A, Salgado M (2022) Understanding the antibacterial mechanisms of copper ion treatment on Mycobacterium avium subsp paratuberculosis. Vet Microbiol 268:109412

    Article  CAS  PubMed  Google Scholar 

  40. Phan D-N, Dorjjugder N, Saito Y, Khan MQ, Ullah A, Bie X, Taguchi G, Kim I-S (2020) Antibacterial mechanisms of various copper species incorporated in polymeric nanofibers against bacteria. Mater Today Commun 25:101377

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by Al-Karkh University of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muntadher I. Rahmah.

Ethics declarations

Conflict of Interest

No potential competing interests was reported by the author.

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmah, M.I. Synthesize of Copper Nanocomposite Mediated Human Urine: Estimated of their Antibacterial Activity. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00912-7

Keywords

Navigation