Skip to main content
Log in

Application of B3S Monolayer as a Promising Anode in K-Ion Batteries

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Choosing a suitable anode material is considered to be very important in developing high-performance batteries. In this study, density functional theory (DFT) computations are done for investigating the potential application of a B3S monolayer as an anode material. As an anode material, the B3S monolayer can be expected to have high performance with a lower potassium (K) diffusion barrier and the open-circuit voltage of the B3S monolayer, which are Ea < 0.37 eV and ∼ 0.19 V respectively. Moreover, its storage capacity is high (1642 mA h g−1). Finally, the metallicity of this monolayer is investigated, showing that the battery operating cycle and electrical conductance are good. Overall, the results reveal that the B3S monolayer can be considered as an encouraging anode material in K-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adhikari K, Ray AK (2011) Carbon- and silicon-capped silicon carbide nanotubes: an ab initio study. Phys Lett Sect A Gen Atom Solid State Phys 375(17):1817–1823. https://doi.org/10.1016/j.physleta.2011.03.016

    Article  CAS  Google Scholar 

  2. Bashiri S, Vessally E, Bekhradnia A, Hosseinian A, Edjlali L (2017) Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies. Vacuum 136:156–162. https://doi.org/10.1016/j.vacuum.2016.12.003

    Article  CAS  Google Scholar 

  3. Belasfar K, Houmad M, Boujnah M, Benyoussef A, Kenz AE (2020) First-principles study of BC3 monolayer as anodes for lithium-ion and sodium-ion batteries applications. J Phys Chem Solids 139:109319

    Article  CAS  Google Scholar 

  4. Bhauriyal P, Mahata A, Pathak B (2018) Graphene-like carbon–nitride monolayer: a potential anode material for Na-and K-ion batteries. J Phys Chem C 122(5):2481–2489

    Article  CAS  Google Scholar 

  5. Chan T-L, Chelikowsky JR (2010) Controlling diffusion of lithium in silicon nanostructures. Nano Lett 10(3):821–825

    Article  CAS  PubMed  Google Scholar 

  6. Chen H-Y, Gilles PW (1970) High molecular weight boron sulfides. V. Vaporization behavior of the boron-sulfur system. J Am Chem Soc 92(8):2309–2312

    Article  CAS  Google Scholar 

  7. Chodvadiya D, Som NN, Jha PK, Chakraborty B (2021) Enhancement in the catalytic activity of two-dimensional α-CN by B, Si and P doping for hydrogen evolution and oxygen evolution reactions. Int J Hydrogen Energy 46(43):22478–22498

    Article  CAS  Google Scholar 

  8. Conrad O, Jansen C, Krebs B (1998) Boron-sulfur and boron-selenium compounds—from unique molecular structural principles to novel polymeric materials. Angew Chem Int Ed 37(23):3208–3218

    Article  Google Scholar 

  9. Dahn JR, Zheng T, Liu Y, Xue J (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270(5236):590–593

    Article  CAS  Google Scholar 

  10. Dolui K, Quek SY (2015) Quantum-confinement and structural anisotropy result in electrically-tunable dirac cone in few-layer black phosphorous. Sci Rep 5:11699. https://doi.org/10.1038/srep11699

    Article  PubMed  PubMed Central  Google Scholar 

  11. Du J, Sun X, Jiang G (2010) Structures, chemical bonding, magnetisms of small Al-doped zirconium clusters. Phys Lett Sect A Gen Atom Solid State Phys 374(6):854–860. https://doi.org/10.1016/j.physleta.2009.12.009

    Article  CAS  Google Scholar 

  12. Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790

    Article  CAS  PubMed  Google Scholar 

  13. Eftekhari A (2017) Low voltage anode materials for lithium-ion batteries (review). Energy Storage Mater 7:157–180. https://doi.org/10.1016/j.ensm.2017.01.009

    Article  Google Scholar 

  14. Gao J, Tang M, Zhang X, Yang G (2022) Conductive C3NS monolayer with superior properties for K ion batteries. J Phys Chem Lett 13(51):12055–12060

    Article  CAS  PubMed  Google Scholar 

  15. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  16. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  PubMed  Google Scholar 

  17. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473. https://doi.org/10.1002/jcc.20078

    Article  CAS  PubMed  Google Scholar 

  18. Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong JR (2010) Controllable N-doping of graphene. Nano Lett 10(12):4975–4980

    Article  CAS  PubMed  Google Scholar 

  19. Hankel M, Searles DJ (2016) Lithium storage on carbon nitride, graphenylene and inorganic graphenylene. Phys Chem Chem Phys 18(21):14205–14215. https://doi.org/10.1039/c5cp07356a

    Article  CAS  PubMed  Google Scholar 

  20. Hankel M, Ye D, Wang L, Searles DJ (2015) Lithium and sodium storage on graphitic carbon nitride. J Phys Chem C 119(38):21921–21927

    Article  CAS  Google Scholar 

  21. Hou H, Qiu X, Wei W, Zhang Y, Ji X (2017) Carbon anode materials for advanced sodium-ion batteries. Adv Energy Mater 7(24):1602898

    Article  Google Scholar 

  22. Hwang HJ, Koo J, Park M, Park N, Kwon Y, Lee H (2013) Multilayer graphynes for lithium ion battery anode. J Phys Chem C 117(14):6919–6923. https://doi.org/10.1021/jp3105198

    Article  CAS  Google Scholar 

  23. Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2(2):148–173

    Article  CAS  Google Scholar 

  24. Jana S, Thomas S, Lee CH, Jun B, Lee SU (2019) B 3 S monolayer: prediction of a high-performance anode material for lithium-ion batteries. J Mater Chem A 7(20):12706–12712

    Article  CAS  Google Scholar 

  25. Jeong G, Kim Y-U, Kim H, Kim Y-J, Sohn H-J (2011) Prospective materials and applications for Li secondary batteries. Energy Environ Sci 4(6):1986–2002

    Article  CAS  Google Scholar 

  26. Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137(36):11566–11569

    Article  CAS  PubMed  Google Scholar 

  27. Joshi RP, Ozdemir B, Barone V, Peralta JE (2015) Hexagonal BC3: a robust electrode material for Li, Na, and K ion batteries. J Phys Chem Lett 6(14):2728–2732

    Article  CAS  PubMed  Google Scholar 

  28. Komaba S, Hasegawa T, Dahbi M, Kubota K (2015) Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 60:172–175

    Article  CAS  Google Scholar 

  29. Ling C, Mizuno F (2014) Boron-doped graphene as a promising anode for Na-ion batteries. Phys Chem Chem Phys 16(22):10419–10424

    Article  CAS  PubMed  Google Scholar 

  30. Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19(2):109–123

    Article  CAS  Google Scholar 

  31. Liu X, Zhu B, Gao Y (2016) Structure stability of TiAu4 nanocluster with water adsorption. Phys Lett Sec A Gen Atom Solid State Phys 380(22–23):1971–1975. https://doi.org/10.1016/j.physleta.2016.04.012

    Article  CAS  Google Scholar 

  32. Luo W, Wan J, Ozdemir B, Bao W, Chen Y, Dai J et al (2015) Potassium ion batteries with graphitic materials. Nano Lett 15(11):7671–7677

    Article  CAS  PubMed  Google Scholar 

  33. Mendoza-Sánchez B, Gogotsi Y (2016) Synthesis of two-dimensional materials for capacitive energy storage. Adv Mater 28(29):6104–6135

    Article  PubMed  Google Scholar 

  34. Mikhaleva NS, Visotin MA, Kuzubov AA, Popov ZI (2017) VS2/graphene heterostructures as promising anode material for Li-ion batteries. J Phys Chem C 121(43):24179–24184

    Article  CAS  Google Scholar 

  35. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  36. Nobuhara K, Nakayama H, Nose M, Nakanishi S, Iba H (2013) First-principles study of alkali metal-graphite intercalation compounds. J Power Sources 243:585–587

    Article  CAS  Google Scholar 

  37. Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360

    Article  CAS  Google Scholar 

  38. Park M-H, Kim MG, Joo J, Kim K, Kim J, Ahn S et al (2009) Silicon nanotube battery anodes. Nano Lett 9(11):3844–3847

    Article  CAS  PubMed  Google Scholar 

  39. Peyghan AA, Tabar MB, Yourdkhani S (2013) A theoretical study of OH and OCH<inf>3</inf> free radical adsorption on a nanosized tube of BC<inf>2</inf>N. J Cluster Sci 24:1–10

    Article  Google Scholar 

  40. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  42. Sergeeva AP, Piazza ZA, Romanescu C, Li W-L, Boldyrev AI, Wang L-S (2012) B22–and B23–: all-boron analogues of anthracene and phenanthrene. J Am Chem Soc 134(43):18065–18073

    Article  CAS  PubMed  Google Scholar 

  43. Sergeeva AP, Zubarev DY, Zhai H-J, Boldyrev AI, Wang L-S (2008) A photoelectron spectroscopic and theoretical study of B16− and B162−: an all-boron naphthalene. J Am Chem Soc 130(23):7244–7246

    Article  CAS  PubMed  Google Scholar 

  44. Tang M, Wang C, Schwingenschlögl U, Yang G (2021) BC6P Monolayer: isostructural and isoelectronic analogues of graphene with desirable properties for K-Ion batteries. Chem Mater 33(23):9262–9269

    Article  CAS  Google Scholar 

  45. Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. World Scientific, Singapore, pp 171–179

    Google Scholar 

  46. Trancik JE (2014) Renewable energy: back the renewables boom. Nature 507(7492):300–302

    Article  PubMed  Google Scholar 

  47. Ugeda MM, Bradley AJ, Shi SF, da Jornada FH, Zhang Y, Qiu DY et al (2014) Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 13(12):1091–1095. https://doi.org/10.1038/nmat4061

    Article  CAS  PubMed  Google Scholar 

  48. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763

    Article  CAS  Google Scholar 

  49. Zhang X, Hou L, Ciesielski A, Samorì P (2016) 2D materials beyond graphene for high-performance energy storage applications. Adv Energy Mater 6(23):1600671

    Article  Google Scholar 

  50. Zhao Z, Yu T, Zhang S, Xu H, Yang G, Liu Y (2019) Metallic P3C monolayer as anode for sodium-ion batteries. Journal of Materials Chemistry A 7(1):405–411

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wurood J. Rajab or Anupam Yadav.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alali, R., Ismael, T.N., Rajab, W.J. et al. Application of B3S Monolayer as a Promising Anode in K-Ion Batteries. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00906-5

Keywords

Navigation