Skip to main content
Log in

Structural Investigation and Electrical Properties on K2Mg(1−x)Znx(SO4)2·6H2O: A Selective Picromerite-Type Electrode Materials

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A series of K2Mg(1−x)Znx(SO4)2.6H2O (x = 0, 0.6, 1) materials have been prepared by slow evaporation method at room temperature. Characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) reveal the presence of pure single monoclinic phases (space group P21/a, Z = 2). Refined parameters shows that the substitution of Mg2+ by Zn2+ increases unit cell dimensions of picromerite-type phase. The vibrational characteristic of \({\text{SO}}_{4}^{2 - }\) groups and water molecules have been identified in the 400–4000 cm−1 wavenumber region. The results of electrical conductivity determined by impedance spectroscopy in the [633–693 K] temperature range for sintered pellets showed a maximum total conductivity of 3.65 × 10–6 S cm−1 and a minimum activation energy of 0.54 eV were obtained at 673 K for K2Mg(SO4)2 sample. The ac-conductivity (σac) measurements exhibit features typical characteristics of the universal dynamic response. The obtained results suggested that these materials are suitable candidates for application as electrodes in potassium-ion batteries (PIBs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Hwang JY, Myung ST, Sun YK (2018) Recent progress in rechargeable potassium batteries. Adv Funct Mater 28:1802938. https://doi.org/10.1002/adfm.201802938

    Article  CAS  Google Scholar 

  2. Eftekhari A, Jian Z, Ji X (2017) Potassium secondary batteries. ACS Appl Mater Interfaces 9:4404–4419. https://doi.org/10.1021/acsami.6b07989

    Article  CAS  PubMed  Google Scholar 

  3. Gabaudan V, Monconduit L, Stievano L, Berthelot R (2019) Snapshot on negative electrode materials for potassium-ion batteries. Front Energy Res 7:46. https://doi.org/10.3389/fenrg.2019.00046

    Article  Google Scholar 

  4. Ballirano P, Belardi G (2006) Rietveld refinement of Tutton’s salt K2[Fe(H2O)6](SO4)2. Acta Crystallogr E 62:i58–i60. https://doi.org/10.1107/S1600536806005514

    Article  ADS  CAS  Google Scholar 

  5. Pacheco TS, Ghosh S, Oliveira M, Barbosa A, Genivaldo JP, Carlos JF (2017) Growth and characterization of potassium cobalt nickel sulfate hexahydrate crystals: a new UV light filter. J Sci Adv Mater Devices 2:354–359. https://doi.org/10.1016/j.jsamd.2017.08.002

    Article  Google Scholar 

  6. Ghosh S, Oliveira M, Pacheco TS, Genivaldo JP, Carlos JF (2018) Growth and characterization of ammonium nickel-cobalt sulfate Tutton’s salt for UV light applications. J Cryst Growth 487:104–115. https://doi.org/10.1016/j.jcrysgro.2018.02.027

    Article  ADS  CAS  Google Scholar 

  7. Manomenova VL, Rudneva EB, Voloshin AE (2016) Crystals of the simple and complex nickel and cobalt sulfates as optical filters for the solar-blind technology. Russian Chem Rev 85:585–609. https://doi.org/10.1070/RCR4530

    Article  ADS  CAS  Google Scholar 

  8. Bosi F, Belardi G, Ballirano P (2009) Structural features in Tutton’s salts K2[M2+(H2O)6](SO4)2, with M2+= Mg, Fe Co, Ni, Cu, and Zn. Am Miner 94:74–82. https://doi.org/10.2138/am.2009.2898

    Article  ADS  CAS  Google Scholar 

  9. Souemti A, Lozano-gorrin AD, Zayani L, Sameh AE, Mohamed A, Emmanuel L, Carla PR, Dalila BHC (2016) Synthesis, characterization and electrical properties of both pure and cobalt-doped picromerite-type hydrated double salt K2Mg1xCox(SO4)2.6H2O (x = 0, 0.4). J Electon Mat 45:4418–4424. https://doi.org/10.1007/s11664-016-4622-2

    Article  ADS  CAS  Google Scholar 

  10. Ramasamy G, Bhagavannarayana G, Subbiah GMG (2012) Crystal growth, structure, crystalline perfection and characterization of zinc magnesium ammonium sulfate hexahydrate mixed crystals ZnxMg(1–x)(NH4)2(SO4)2·6H2O. J Cryst Growth 352:137–142. https://doi.org/10.1016/j.jcrysgro.2012.02.028

    Article  ADS  CAS  Google Scholar 

  11. Dhandapani M, Thyagu L, Arun P, Amirthaganesan G, Kandhaswamy MA, Srinivasan V (2006) Synthesis and characterization of potassium magnesium sulfate hexahydrate crystals. Cryst Res Technol 41:328–331. https://doi.org/10.1002/crat.200510582

    Article  CAS  Google Scholar 

  12. Radouanne F, Halim H, Mnif A (2008) Study of the sylvite transformation into arcanite at 25 °C. World J Agric Sci 4:390–397. https://doi.org/10.12691/wjar-5-2-2

    Article  Google Scholar 

  13. Anandalakshmi H, Parthiban S, Parvati V, Vhanikachalam T, Mojumdar SC (2011) Thermal and optical properties of Cu(II)-doped magnesium rubidium sulfate hexahydrate crystals. J Therm Anal Calorim 104:963–967. https://doi.org/10.1007/s10973-011-1315-1

    Article  CAS  Google Scholar 

  14. Ahmed S, Lotfi Z, Julian MP, Manuel CY, Carlos PV, Dalila BHC (2015) Synthesis, characterization and thermal analysis of K2M(SO4)2.6H2O (M =Mg Co, Cu). J Therm Anal Calorim 122:929–936. https://doi.org/10.1007/s10973-015-4779-6

    Article  CAS  Google Scholar 

  15. Marzougui H, Sameh AE, Dalila BHC (2016) Synthesis, thermal, XRD and spectroscopic studies characterization of Tutton salt K2M(SO4)2.6H2O (M = Mg, Ni). J Mol Struct 1120:234–238. https://doi.org/10.1016/J.MOLSTRUC.2016.05.040

    Article  ADS  CAS  Google Scholar 

  16. Souamti A, Zayani L, Lozano-Gorrin AD, Dalila BHC, Julian M (2017) Synthesis, characterization and thermal behavior of new rare earth ion-doped picromerite-type Tutton’s salts. J Therm Anal Calorim 128:1001–1008. https://doi.org/10.1007/s10973-016-6028-z

    Article  CAS  Google Scholar 

  17. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. https://doi.org/10.1107/S0021889869006558

    Article  ADS  CAS  Google Scholar 

  18. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69. https://doi.org/10.1016/0921-4526(93)90108-I

    Article  ADS  CAS  Google Scholar 

  19. Rasmus B, Mogens M, Trine K, Anke H, Yi-Lin L, Peter VH (2007) Detailed characterization of anode-supported SOFCs by impedance spectroscopy. J Electrochem Soc 154:B371. https://doi.org/10.1149/1.2433311

    Article  CAS  Google Scholar 

  20. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chaleogenides. Acta Crystallogr A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  21. Soptrajanov B, Petrusevski WM (1997) Vibrational spectra of hexaaqua complexes V. The water bending bands in the infrared spectra of Tuton salts. J Mol Struct 408:283–286. https://doi.org/10.1016/S0022-2860(96)09660-3

    Article  ADS  Google Scholar 

  22. Oxton LA, Osvald K (1978) Infrared spectra of the ammonium ion in crystals: Part V. Tutton’s salts: a correlation of vibrational frequency and hydrogen-bonded N⋯O distance for the ammonium ion. J Mol Struct 49:309–322. https://doi.org/10.1016/0022-2860(78)87268-8

    Article  ADS  CAS  Google Scholar 

  23. Marinova D, Georgiev M, Stoilova D (2009) Vibrational behavior of matrix-isolated ions in Tutton compounds. I Infrared spectroscopic study of NH4+ and SO42 ions included in magnesium sulfates and selenates. J Mol Struct 929:67–72. https://doi.org/10.1016/j.molstruc.2009.04.004

    Article  ADS  CAS  Google Scholar 

  24. Abu El-Fadl A, Nashaat AM (2017) Growth, structural, and spectral characterizations of potassium and ammonium zinc sulfate hydrate single crystals. Appl Phys A 123:339. https://doi.org/10.1007/s00339-017-0957-7

    Article  ADS  CAS  Google Scholar 

  25. Kahlaoui R, Arbi K, Jimenez R, Isabel S, Jesus S, Riadh T (2018) Distribution and mobility of lithium in NASICON-type Li1xTi2-xNbx(PO4)3 (0≤ x ≤0.5) compounds. Mater Res Bull 101:146–154. https://doi.org/10.1016/j.materresbull.2018.01.022

    Article  CAS  Google Scholar 

  26. Shin DW, Kang NR, Lee KH, Doo HC, Ji HK, Won HL, Young ML (2014) Proton conducting, composite sulfonated polymer membrane for medium temperature and low relative humidity fuel cells. J Power Sour 262:162–168. https://doi.org/10.1016/j.jpowsour.2014.03.116

    Article  CAS  Google Scholar 

  27. Souamti A, Kahlaoui M, Mohammed B, Antonio DLG, Dalila BHC (2017) Synthesis, structural and electrochemical properties of new ytterbium doped langbeinite ceramics. Ceram Int 43:10939–10947. https://doi.org/10.1016/j.ceramint.2017.05.132

    Article  CAS  Google Scholar 

  28. Ahmed S, Dalila BHC (2021) Effects of Gd2O3 doping on the structure and the conduction mechanism of K2Mg2(SO4)3 langbeinite ceramics: a comparative study. Mater Sci Eng B 265:115040. https://doi.org/10.1016/j.mseb.2020.115040

    Article  CAS  Google Scholar 

  29. Marinova D, Karadjova V, Stoilova D (2015) Infrared spectroscopic study of SO42 ions included in M’2M’’(SeO4)2⋅6H2O (Me’ =K, NH4+; M" = Mg Co, Ni, Cu, Zn) and NH4+ ions included in K2M(XO4)2⋅6H2O (X=S, Se; M"=Mg Co, Ni, Cu, Zn). Spectra Acta Part A 134:526–534. https://doi.org/10.1016/j.saa.2014.06.114

    Article  ADS  CAS  Google Scholar 

  30. Jonscher AK (1997) The universal dielectric response. Nature 267:673–679. https://doi.org/10.1038/267673a0

    Article  ADS  Google Scholar 

  31. Ngai KL, Tsang KY (1999) Similarity of relaxation in supercooled liquids and interacting arrays of oscillators. Phys Rev E 60:511–4517. https://doi.org/10.1103/physreve.60.4511

    Article  Google Scholar 

  32. Inoubli A, Kahlaoui M, Chefi S, Sobrados I, Madani A, Sanz J, Ben Haj Amara A (2014) Structural aspects that enhance oxygen mobility in La9−2 x/3Mn 0.5REx 0.5x/3(SiO4)6O2 with RE=Ca, Sr and Ba. J Alloy Compd 604:340–345. https://doi.org/10.1016/j.jallcom.2014.03.140

    Article  CAS  Google Scholar 

  33. Sleklerskl M, Wieczorek W (1993) Application of the “universal power law” to the studies of ac conductivity of polymeric electrolytes. Solid State Ionics 60:67–71. https://doi.org/10.1016/0167-2738(93)90276-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the financial support of Tunisian Minister of Higher Education and Scientific Research. We are also grateful to the head of the Department of Physics and all members of laboratory of electrical conductivity of materials in the Bizerte Science Faculty.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhouene Kahlaoui.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahlaoui, R., Souamti, A. & Chehimi, D.B.H. Structural Investigation and Electrical Properties on K2Mg(1−x)Znx(SO4)2·6H2O: A Selective Picromerite-Type Electrode Materials. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00900-x

Keywords

Navigation