Skip to main content
Log in

Aggregation and Emission Modulations of Two-Component Gel Phase Systems Induced by H-Bonds

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A novel organogelator, named 4-[3,4,5-Tris(dodecyloxy)benzoyloxy]-4׳-stilbazole (12TSB), was successfully synthesized through mild reaction conditions. The synthesis involved the utilization of 4-Hydroxy-4′-stilbazole, 3,4,5-tridodecyloxylbenzoic acid, and DCC/HOBt as dehydration reagents, resulting in a high yield of the desired compound. To obtain 1,3,5-Tris(4-amidobutanoic acid)phenylbenzene (TABAPB), a mixture of 1,3,5-tri(4-aminophenyl)benzene and three equivalents of succinic anhydride was stirred in THF at room temperature for 24 h. The reaction proceeded to produce TABAPB as the desired product. The synthesized stilbazole derivative, 12TSB, exhibited the ability to form gel phases when dissolved in alcoholic solvents and DMSO, owing to the interactions facilitated by л–л (pi–pi) and Van der Waals forces. The resulting gel materials displayed distinct physical properties, which varied depending on the solvent used. Complex systems were prepared by dissolving l-Tartaric acid, along with 2 equivalents of 12TSB or TABAPB, in dry THF, followed by subsequent solvent evaporation. The derivatives of the complex systems formed gel phases, and their properties were modulated based on the potential complementary interactions of H-bonding and л-л stacking. Characterization of these systems through UV–Vis, 1H-NMR, and fluorescence emission tests revealed that the modulation of optical properties primarily originated from the formation of either H-type or J-type aggregations. The specific type of aggregation observed was dictated by the nature of the two interacting components, acting as H-donor–acceptor pairs. This study contributes to a deeper understanding of the self-assembly process by elucidating the development of gelation and its impact on the modulation of optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Draper ER, Adams DJ (2018) How should multicomponent supramolecular gels be characterised? Chem Soc Rev 47(10):3395–3405. https://doi.org/10.1039/C7CS00804J

    Article  CAS  PubMed  Google Scholar 

  2. Weiss RG (2014) The past, present, and future of molecular gels. what is the status of the field, and where is it going? J Am Chem Soc 136(21):7519–7530. https://doi.org/10.1021/ja503363v

    Article  CAS  PubMed  Google Scholar 

  3. Jones CD, Steed JW (2016) Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 16(45):6546–6596. https://doi.org/10.1039/C6CS00435K

    Article  Google Scholar 

  4. Kumar DK, Steed JW (2014) Supramolecular gel phase crystallization : orthogonal self-assembly under non-equilibrium conditions. Chem Soc Rev 43(7):2080–2088. https://doi.org/10.1039/C3CS60224A

    Article  CAS  PubMed  Google Scholar 

  5. Raeburn J, Adams DJ (2015) Multicomponent low molecular weight gelators. Chem Commun 51(25):5170–5180. https://doi.org/10.1039/C4CC08626K

    Article  CAS  Google Scholar 

  6. Dey B, Mondal RK, Mukherjee S, Satpati B, Mukherjee N, Mandal A, Senapatie D, Sinha Babu SP (2015) A supramolecular hydrogel for generation of a benign DNA-hydrogel. RSC Adv 5:105961–105968. https://doi.org/10.1039/C5RA19172F

    Article  CAS  Google Scholar 

  7. Corradini MG, Rogers MA (2016) Molecular gels: improving selection and design through computational methods. Curr Opin Food Sci 9:84–92. https://doi.org/10.1016/j.cofs.2016.09.009

    Article  Google Scholar 

  8. Edwards W, Smith DK (2013) Dynamic evolving two-component supramolecular gels—hierarchical control over component selection in complex mixtures. J Am Chem Soc 135(15):5911–5920. https://doi.org/10.1021/ja4017107

    Article  CAS  PubMed  Google Scholar 

  9. Nirmala A, Mukkatt I, Shankar S, Ajayaghosh A (2021) Thermochromic color switching to temperature controlled volatile memory and counter operations with metal-organic complexes and hybrid gels. Angew Chem Int Ed 60(1):455–465. https://doi.org/10.1002/anie.202011580

    Article  CAS  Google Scholar 

  10. Das G, Cherumukkil S, Padmakumar A, Banakar VB, Praveen VK, Ajayaghosh A (2021) Tweaking a BODIPY spherical self-assembly to 2D supramolecular polymers facilitates excited-state cascade energy transfer. Angew Chem Int Ed 60(14):7851–7859. https://doi.org/10.1002/anie.202015390

    Article  CAS  Google Scholar 

  11. Praveen VK, Vedhanarayanan B, Mal A, Mishra RK, Ajayaghosh A (2020) Self-Assembled extended π-systems for sensing and security applications. Acc Chem Res 53(2):496–507. https://doi.org/10.1021/acs.accounts.9b00580

    Article  CAS  PubMed  Google Scholar 

  12. Zhang W, Jin W, Fukushima T, Saeki A, Seki S, Aida T (2011) Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334(6054):340–343. https://doi.org/10.1126/science.1210369

    Article  CAS  PubMed  Google Scholar 

  13. Moon K-S, Kim H-J, Lee E, Lee M (2007) Self-assembly of T-shaped aromatic amphiphiles into stimulus-responsive nanofibers. Angew Chem Int Ed 46(36):6807–6810. https://doi.org/10.1002/anie.200702136

    Article  CAS  Google Scholar 

  14. Ardoña HAM, Draper ER, Citossi F, Wallace M, Serpell LC, Adams DJ, Tovar JD (2017) Kinetically controlled coassembly of multichromophoric peptide hydrogelators and the impacts on energy transport. J Am Chem Soc 139(25):8685–8692. https://doi.org/10.1021/jacs.7b04006

    Article  CAS  PubMed  Google Scholar 

  15. Dhiman S, Jalani K, George SJ (2020) Redox-mediated, transient supramolecular charge-transfer gel and ink. ACS Appl Mater Interfaces 12(5):5259–5264. https://doi.org/10.1021/acsami.9b17481

    Article  CAS  PubMed  Google Scholar 

  16. Tan T, Shen Z, Wang Y, Guo Z, Hu J, Zhang Y (2020) Self-assembly of pentapeptides in ethanol to develop organogels. Soft Matter 16(46):10567–10573. https://doi.org/10.1039/D0SM01303J

    Article  CAS  PubMed  Google Scholar 

  17. Sebastian A, Mahato MK, Prasad E (2019) A mixed ligand approach towards lanthanide-based gels using citric acid as assembler ligand: white light emission and environmental sensing. Soft Matter 15(16):3407–3417. https://doi.org/10.1039/C9SM00153K

    Article  CAS  PubMed  Google Scholar 

  18. Falcone N et al (2020) Multi-component peptide hydrogels – a systematic study incorporating biomolecules for the exploration of diverse, tuneable biomaterials. Biomater Sci 8(20):5601–5614. https://doi.org/10.1039/d0bm01104e

    Article  CAS  PubMed  Google Scholar 

  19. Bianco S, Panja S, Adams DJ (2022) Using rheology to understand transient and dynamic gels. Gels 8:132. https://doi.org/10.3390/gels8020132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dhibar S, Dey A, Ghosh D, Majumdar S, Dey A, Mukherjee P, Mandal A, Ray PP, Dey B (2019) A supramolecular gel of oxalic acid-monoethanolamine for potential schottky barrier diode application. Chem Select 4:1535–1541. https://doi.org/10.1002/slct.201803004

    Article  CAS  Google Scholar 

  21. Majumdar S, Pal B, Lepcha G, Das KS, Pal I, Ray PP, Dey B (2023) Establishment of different aliphatic amines-based rapid self-healing Mg(OH)2 metallogels: exploring the morphology, rheology and intriguing semiconducting Schottky diode characteristics. New J Chem 47:4752–4760. https://doi.org/10.1039/D2NJ06029A

    Article  CAS  Google Scholar 

  22. Majumdar S, Lepcha G, Ahmed KT, Pal I, Biswas SR, Dey B (2022) Squaric acid driven supramolecular metallogels of Cd(II) and Zn(II): Sensitive inhibitors for multi-drug resistance ESKAPE pathogens. J Mol Liq 368:120619. https://doi.org/10.1016/j.molliq.2022.120619

    Article  CAS  Google Scholar 

  23. Hanabusa K, Miki T, Taguchi Y, Koyama T, Shirai H (1993) Two-component, small molecule gelling agents. J Chem Soc Chem Commun 18:1382–1384. https://doi.org/10.1039/C39930001382

    Article  Google Scholar 

  24. Piras CC, Mahon CS, Smith DK (2020) Self-assembled supramolecular hybrid hydrogel beads loaded with silver nanoparticles for antimicrobial applications. Chem Eur J 26(38):8452–8457. https://doi.org/10.1002/chem.202001349

    Article  CAS  PubMed  Google Scholar 

  25. Patterson AK, Smith DK (2020) Two-component supramolecular hydrogel for controlled drug release. Chem Commun 56(75):11046–11049. https://doi.org/10.1039/D0CC03962D

    Article  CAS  Google Scholar 

  26. Chandrasekharan SV et al (2021) Blue-emissive two-component supergelator with aggregation-induced enhanced emission. RSC Adv 11:9856–19863. https://doi.org/10.1039/d1ra03751j

    Article  CAS  Google Scholar 

  27. Schenning APJ, Meijer EW (2005) Supramolecular electronics; nanowires from self-assembled π-conjugated systems. Chem Commun 26:3245–3258. https://doi.org/10.1039/B501804H

    Article  Google Scholar 

  28. Michel SSE et al (2020) Norbornene-functionalized chitosan hydrogels and microgels via unprecedented photoinitiated self-assembly for potential biomedical applications. ACS Appl Bio Mater 3(8):5253–5262. https://doi.org/10.1021/acsabm.0c00629

    Article  CAS  PubMed  Google Scholar 

  29. An B-K, Kwon S-K, Jung S-D, Park SY (2002) Enhanced emission and its switching in fluorescent organic nanoparticles. J Am Chem Soc 124(48):14410–14415. https://doi.org/10.1021/ja0269082

    Article  CAS  PubMed  Google Scholar 

  30. González-Rodríguez D, Schenning APHJ (2011) Hydrogen-bonded supramolecular π-functional materials. Chem Mater 23(3):310–325. https://doi.org/10.1021/cm101817h

    Article  CAS  Google Scholar 

  31. Bao C, Lu R, Jin M, Xue P, Tan C, Liu G, Zhao Y (2005) L-Tartaric acid assisted binary organogel system: strongly enhanced fluorescence induced by supramolecular assembly. Org Biomol Chem 3(14):2508–2512. https://doi.org/10.1039/B504945H

    Article  CAS  PubMed  Google Scholar 

  32. Bruce DW (2001) The materials chemistry of alkoxystilbazoles and their metal complexes. Adv Inorg Chem 52:151–152. https://doi.org/10.1016/S0898-8838(05)52003-8

    Article  CAS  Google Scholar 

  33. Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) Halogen bonding: a new interaction for liquid crystal formation. J Am Chem Soc 126(1):16–17. https://doi.org/10.1021/ja036994l

    Article  CAS  PubMed  Google Scholar 

  34. Bao C et al (2005) L-Tartaric acid assisted binary organogel system: strongly enhanced fluorescence induced by supramolecular assembly. Org Biomol Chem 3(14):2508–2512. https://doi.org/10.1039/B504945H

    Article  CAS  PubMed  Google Scholar 

  35. Simalou O, Xue P, Lu R (2010) A potent triphenylbenzene-based H-bonding donor to assist formation of two-component organogels with stilbazoles. Tetrahedron Lett 51(28):3685–3690. https://doi.org/10.1016/j.tetlet.2010.05.043

    Article  CAS  Google Scholar 

  36. Nandakumar A, Ito Y, Ueda M (2020) Solvent effects on the self-assembly of an amphiphilic polypeptide incorporating α-helical hydrophobic blocks. J Am Chem Soc 142(50):20994–21003. https://doi.org/10.1021/jacs.0c03425

    Article  CAS  PubMed  Google Scholar 

  37. Su M-M, Yang H-K, Ren L-J, Zheng P, Wang W (2015) Solvent-mediated gel formation, hierarchical structures, and rheological properties of organogels. Soft Matter 11(4):741–748. https://doi.org/10.1039/C4SM02423K

    Article  CAS  PubMed  Google Scholar 

  38. Shirakawa M et al (2007) Organogels of 8-quinolinol/metal(II)-chelate derivatives that show electron- and light-emitting properties. Chem Eur J 13(15):4155–4162. https://doi.org/10.1002/chem.200601813

    Article  CAS  PubMed  Google Scholar 

  39. Kishida T, Fujita N, Sada K, Shinkai S (2005) Sol−gel reaction of porphyrin-based superstructures in the organogel phase: creation of mechanically reinforced porphyrin hybrids. J Am Chem Soc 127(20):7298–7299. https://doi.org/10.1021/ja050563g

    Article  CAS  PubMed  Google Scholar 

  40. Guilbaud J-B, Saiani A (2011) Using small angle scattering (SAS) to structurally characterise peptide and protein self-assembled materials. Chem Soc Rev 40(3):1200–1210. https://doi.org/10.1039/c0cs00105h

    Article  CAS  PubMed  Google Scholar 

  41. Abreu MF, dos Santos DR, Gatts CEN, Giacomini R, Cardoso SL, Miranda PCML (2014) Small-angle X-ray scattering structural study of the nanofiber self-assembly process in supramolecular gels based on glucopyranosides. J Appl Crystallogr 47(4):1284–1297. https://doi.org/10.1107/s160057671401228x

    Article  CAS  Google Scholar 

  42. Esch JV et al (1999) Cyclic bis-urea compounds as gelators for organic solvents. Chem Eur J 5(3):937–950

    Article  Google Scholar 

  43. Huggins MT, Kesharwani T, Buttrick J, Nicholson C (2020) Variable temperature NMR experiment studying restricted bond rotation. J Chem Educ 97(5):1425–1429. https://doi.org/10.1021/acs.jchemed.0c00057

    Article  CAS  Google Scholar 

  44. Nonappa ŠD, Kolehmainen E (2015) Studies on supramolecular gel formation using DOSY NMR. Magn Reson Chem 53(4):256–260. https://doi.org/10.1002/mrc.4185

    Article  CAS  PubMed  Google Scholar 

  45. Vysotsky MO, Thondorf I, BÖhmer V, (2001) Hydrogen bonded calixarene capsules kinetically stable in DMSO. Chem Commun. https://doi.org/10.1039/b105613c

    Article  Google Scholar 

  46. Chand A, Chowdhuri S (2016) Effects of dimethyl sulfoxide on the hydrogen bonding structure and dynamics of aqueous N-methylacetamide solution. J Chem Sci 128(6):0991–1001. https://doi.org/10.1007/s12039-016-1092-2

    Article  CAS  Google Scholar 

  47. Liao L et al (2021) Supramolecular gel formation regulated by water content in organic solvents: self-assembly mechanism and biomedical applications. RSC Adv 11(19):11519–11528. https://doi.org/10.1039/d1ra00647a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi k, Hamilton AD, (2001) Selective anion binding by a macrocycle with convergent hydrogen bonding functionality. J Am Chem Soc 123(10):2456–2457. https://doi.org/10.1021/ja005772+

    Article  CAS  PubMed  Google Scholar 

  49. Theodorou V, Troganis N, Gerothanassis IP (2004) On the detection of both carbonyl and hydroxyl oxygens inamino acid derivatives: a 17O NMR reinvestigation. Tetrahedron Lett 45:2243–2245. https://doi.org/10.1016/j.tetlet.2003.12.162

    Article  CAS  Google Scholar 

  50. Nova P, Vicic-Topic D, Meic Z, Sekusak S, Sabljic A (1995) Investigation of hydrogen bond structure in benzoic acid solutions. J Mol Struct 356(2):131–141. https://doi.org/10.1016/0022-2860(95)08939-S

    Article  Google Scholar 

  51. Ko H, Shim G, Kim YM (2005) Evidences that β-lactose forms hydrogen bonds in DMSO. Bull Korean Chem Soc 26(12):2001–2006. https://doi.org/10.5012/bkcs.2005.26.12.2001

    Article  CAS  Google Scholar 

  52. West RT, Garza LA, Winchester WR, Wasmley JA (1994) Conformation, hydrogen bonding and aggregate formation of guanosine 5’-monophosphate and guanosine in dimethylsulfoxide. Nucl Acids Res 22(23):5128–5134. https://doi.org/10.1093/nar/22.23.5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Golubev NS, Shenderovich IG, Smirnov SN, Denisov GS, Limbach H-H (1999) Nuclear scalar spin-spin coupling reveals novel properties of low-barrier hydrogen bonds in a polar environment. Chem Eur J 5(2):492–497

    Article  CAS  Google Scholar 

  54. Bao C et al (2006) Helical stacking tuned by alkoxy side chains in π-conjugated triphenylbenzene discotic derivatives. Chem Eur J 12(12):3287–3294. https://doi.org/10.1002/chem.200501058

    Article  CAS  PubMed  Google Scholar 

  55. Shenderovich IG, Tolstoy PM, Golubev NS, Smirnov SN, Denisov GS, Limbach H-H (2003) Low-temperature NMR studies of the structure and dynamics of a novel series of acid−base complexes of HF with collidine exhibiting scalar couplings across hydrogen bonds. J Am Chem Soc 125(38):11710–11720. https://doi.org/10.1021/ja029183a

    Article  CAS  PubMed  Google Scholar 

  56. KozhemyakinY KM, Rominger F, Dreuw A, Bunz UHF (2018) A tethered tolane: twist the excited state. Chem Eur J 24(57):15219–15222. https://doi.org/10.1002/chem.201804095

    Article  CAS  Google Scholar 

  57. Levvitus M, Schmieder K, Ricks H, Shimizu KD, Bunz UHF, Garcia-garibay MA (2001) Steps to demarcate the effects of chromophore aggregation and planarization in Poly(phenyleneethynylene)s 1 rotationally interrupted conjugation in the excited States of 1,4-Bis(phenylethynyl)benzene. J Am Chem Soc 123(18):4259–4265. https://doi.org/10.1021/ja003959v

    Article  CAS  Google Scholar 

  58. Eder T et al (2017) Switching between H- and J-type electronic coupling in single conjugated polymer aggregates. Nat Commun 8:1641. https://doi.org/10.1038/s41467-017-01773-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kinashi K, Lee K-P, Matsumoto S, Ishida K, Ueda Y (2012) Alkyl substituent effects on J- or H-aggregate formation of bisazomethine dyes. Dyes Pigm 92(1):783–788. https://doi.org/10.1016/j.dyepig.2011.05.024

    Article  CAS  Google Scholar 

  60. Heo J et al (2022) Recent trends in molecular aggregates: an exploration of biomedicine. Aggregate 3(2):e159. https://doi.org/10.1002/agt2.159

    Article  CAS  Google Scholar 

  61. Shirakawa M, Kawano S, Fujita N, Sada K, Shinkai S (2003) Hydrogen-bond-assisted control of H VERSUS J aggregation mode of porphyrins stacks in an organogel system. J Org Chem 68(13):5037–5044. https://doi.org/10.1021/jo0341822

    Article  CAS  PubMed  Google Scholar 

  62. Das S, Chattopadhyay AP, De S (2008) Controlling J aggregation in fluorescein by bile salt hydrogels. J Photochem Photobiol, A 197(2–3):402–414. https://doi.org/10.1016/j.jphotochem.2008.02.003

    Article  CAS  Google Scholar 

  63. Auweter H et al (1999) Supramolecular structure of precipitated nanosize β-carotene particles. Angew Chem Int Ed 38(18):2188–2191. https://doi.org/10.1002/(SICI)1521-3773(19990802)38:15%3c2188::AID-ANIE2188%3e3.0.CO;2-%23

    Article  CAS  Google Scholar 

  64. Kasha M, Rawls HR, El-Bayoumi MA (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11:371–393. https://doi.org/10.1351/pac196511030371

    Article  CAS  Google Scholar 

  65. Dähne L, Biller E (1998) Color variation in highly oriented dye layers by polymorphism of dye aggregates. Adv Mater 10(3):241–245. https://doi.org/10.1002/(SICI)1521-4095(199802)10:3%3c241::AID-ADMA241%3e3.0.CO;2-Q

    Article  Google Scholar 

  66. Ruban AV, Horton P, Young AJJ (1993) Aggregation of higher plant xanthophylls: Differences in absorption spectra and in the dependency on solvent polarity. Photochem Photobiol B 21(3):229–234. https://doi.org/10.1016/1011-1344(93)80188-F

    Article  CAS  Google Scholar 

  67. Ramya S et al (2020) Aggregation induced emission behavior in oleylamine acetone system and its application to get improved photocurrent from In2S3 quantum dots. Sci Rep 10:19712. https://doi.org/10.1038/s41598-020-76703-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Birks JB (1970) In photophysics of Aromatic Molecules. Wiley-InterScience London

  69. Kim BJ, Park SY, Choi DH (2001) Effect of molecular aggregation on the photo-induced anisotropy in amorphous polymethacrylate bearing an aminonitroazobenzene moiety. Bull Korean Chem Soc 22(3):271–275. https://doi.org/10.5012/bkcs.2001.22.3.271

    Article  CAS  Google Scholar 

  70. Gruszecki WIJ (1991) Structural characterization of the aggregated forms of violaxanthin. Biol Phys 18:99–109. https://doi.org/10.1007/BF00395057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.

Author information

Authors and Affiliations

Authors

Contributions

OS and RL are responsible of conceptualization, OS software treatments, OS, KE, AKA and RL writing-original draft preparation, OS and RL validation, RL supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Oudjaniyobi Simalou.

Ethics declarations

Conflict of Interest

There are no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 273 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simalou, O., Eloh, K., Agbodan, A.K. et al. Aggregation and Emission Modulations of Two-Component Gel Phase Systems Induced by H-Bonds. Chemistry Africa 7, 301–313 (2024). https://doi.org/10.1007/s42250-023-00731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00731-2

Keywords

Navigation