Skip to main content

Advertisement

Log in

Synthesis and Structural Characterisation of Some Carbohydrate Steroid Hybrids

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Glycosteroids are a wide family of natural and synthetic compounds with interesting and diverse architectures. Among synthetic types, we report the synthesis of some monocatenar carbohydrate steroid hybrids connected by a spacer. The strategy is based on the use of the carboxymethylglycosyl lactone strategy towards allyl amides and their connection to an allylated steroid using a cross-metathesis reaction. The scope of the reaction included glucose, galactose and cellobiose, on the carbohydrate side, and to dihydrocholesterol on the steroid side. A series of variously protected new monocatenar synthetic glycosteroids are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The spectroscopic data supporting the findings of this study are listed in the experimental section within the paper. Some raw data files and copies of spectra be are available from the corresponding author upon reasonable request.

References

  1. Vincken JP, Heng L, de Groot A, Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275–297. https://doi.org/10.1016/j.phytochem.2006.10.008

    Article  CAS  PubMed  Google Scholar 

  2. Faizal A, Geelen D (2013) Saponins and their role in biological processes in plants. Phytochem Rev 12:877–893. https://doi.org/10.1007/s11101-013-9322-4

    Article  CAS  Google Scholar 

  3. Xu XH, Li T, Fong CMV, Chen X, Chen XJ, Wang YT, Huang MQ, Lu JJ (2016) Saponins from Chinese Medicines as Anticancer Agents. Molecules 21:1326. https://doi.org/10.3390/molecules21101326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: Properties, Applications and Processing. Crit Rev Food Sci Nutr 47:231–258. https://doi.org/10.1080/10408390600698197

    Article  CAS  PubMed  Google Scholar 

  5. Sun A, Xu X, Lin J, Cui X, Xu R (2015) Neuroprotection by Saponins. Phytother Res 29:187–200. https://doi.org/10.1002/ptr.5246

    Article  CAS  PubMed  Google Scholar 

  6. Ivanchina NV, Kicha AA, Stonik VA (2011) Steroid glycosides from marine organisms. Steroids 76:425–454. https://doi.org/10.1016/j.steroids.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  7. Grille S, Zaslawski A, Thiele S, Plat J, Warnecke D (2010) The functions of steryl glycosides come to those who wait: Recent advances in plants, fungi, bacteria and animals. Prog Lipid Res 49:262–288. https://doi.org/10.1016/j.plipres.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  8. Ikpa CCB, Maduka TOD (2020) Antimicrobial Properties of Methanol Extract of Dacryodes edulis Seed and Determination of Phytochemical Composition Using FTIR and GCMS. Chemistry Africa 3:927–935. https://doi.org/10.1007/s42250-020-00176-x

    Article  CAS  Google Scholar 

  9. Oriola AO, Aladesanmi AJ, Idowu TO, Akinkunmi EO, Oyedeji AO, Ogunsina MO, Arthur G, Schweizer F (2022) Saponin from Massularia acuminata Inhibits the Growths of Some Microbial and Human Cancerous Cells in vitro. Chemistry Africa 5:1959–1966. https://doi.org/10.1007/s42250-022-00488-0

    Article  CAS  Google Scholar 

  10. Song XQ, Tian LL, Ye T, Liu H, Zhang H (2023) Steroid glycosides from the roots of Marsdenia tenacissima. Phytochemistry, 205:113506. https://doi.org/10.1016/j.phytochem.2022.113506.

  11. Ugheighele SE, Imafidon KE, Choudhary MI, Shakil A, Okoro EE (2022) Isolation of Quercetin and Avicularin from Dennettia tripetala (G. Baker) Seeds, and Evaluation of the Oxidative Stress Management Capacity and Cytotoxic Activities of Its Acetone Extract and Fractions. Chemistry Africa 5:1275–1285. https://doi.org/10.1007/s42250-022-00413-5

    Article  CAS  Google Scholar 

  12. Ifijen IH, Odiachi IJ, Maliki M, Aghedo ON, Okereke CO (2020) Investigation of the Anti-malaria Potency and Chemical Constituents of the Bark Extracts of Ficus elastica in Plasmodium berghei Infected Mice. Chemistry Africa 3:1045–1051. https://doi.org/10.1007/s42250-020-00163-2

    Article  CAS  Google Scholar 

  13. Cheriet T, Mancini I, Seghiri R, Benayache F, Benayache S (2015) Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae). Nat Prod Res 29:1589–1613. https://doi.org/10.1080/14786419.2014.999243

    Article  CAS  PubMed  Google Scholar 

  14. Das B, Kumar B, Begum W, Bhattarai A, Mondal MH, Saha B (2022) Comprehensive Review on Applications of Surfactants in Vaccine Formulation, Therapeutic and Cosmetic Pharmacy and Prevention of Pulmonary Failure due to COVID-19. Chemistry Africa 5:459–480. https://doi.org/10.1007/s42250-022-00345-0

    Article  CAS  PubMed Central  Google Scholar 

  15. Boullanger P (1997) Amphiphilic carbohydrates as a tool for molecular recognition in organized systems. In: Driguez H, Thiem J (eds) Glycoscience Synthesis of Substrate Analogs and Mimetics. Top Curr Chem, Vol 187, Springer. pp 275–312. https://doi.org/10.1007/BFb0119260

  16. Vill V, Minden HM, Koch MHJ, Seydel U, Brandenburg K (2000) Thermotropic and lyotropic properties of long chain alkyl glycopyranosides. Part I: monosaccharide headgroups Chem Phys Lipids 104:75–91. https://doi.org/10.1016/s0009-3084(99)00119-x

    Article  CAS  PubMed  Google Scholar 

  17. Yang Z, Xu R, Chambert S, Soulère L, Ahmar M, Mackenzie M, Cowling SJ, Goodby JW, Queneau Y (2017) Carbohydrate steroid hybrid architectures: the viewpoint of amphiphilicity and self-organisation. In: Queneau Y, Rauter AP, Lindhorst T (eds) Carbohydrate Chemistry, Chemical and Biological Approaches, Specialist Periodical Reports, Vol 42, RSC, pp 274–312. https://doi.org/10.1039/9781782626657-00274

  18. Yu B, Sun J, Yang X (2012) Assembly of Naturally Occurring Glycosides, Evolved Tactics, and Glycosylation Methods. Acc Chem Res 45:1227–1236. https://doi.org/10.1021/ar200296m

    Article  CAS  PubMed  Google Scholar 

  19. Thuan NH, Sohng JK (2013) Recent biotechnological progress in enzymatic synthesis of glycosides. J Ind Microbiol Biotechnol 40:1329–1356. https://doi.org/10.1007/s10295-013-1332-0

    Article  CAS  PubMed  Google Scholar 

  20. Faivre V, Bardonnet PL, Boullanger P, Amenitsch H, Ollivon M, Falson F (2009) Self-Organization of Synthetic Cholesteryl Oligoethyleneglycol Glycosides in Water. Langmuir 25:9424–9431. https://doi.org/10.1021/la900492j

    Article  CAS  PubMed  Google Scholar 

  21. Iveson P, Parke DV (1970) The preparation and chemical properties of some glucuronyl esters of β-glycyrrhetic acid (3β-hydroxy-11-oxo-olean-12-en-30-oic acid) and its derivatives. J Chem Soc (C) 2038–2042. https://doi.org/10.1039/J39700002038

  22. Rivera DG, Pérez-Labrada K, Lambert L, Dörner S, Westermann B, Wessjohann LA (2012) Carbohydrate–steroid conjugation by Ugi reaction: one-pot synthesis of triple saccharide/pseudo-peptide/spirostane hybrids. Carbohydr Res 359:102–110. https://doi.org/10.1016/j.carres.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  23. Choteau F, Durand G, Ranchon-Cole I, Cercy C, Pucci B (2010) Cholesterol-based α-phenyl-N-tert-butyl nitrone derivatives as antioxidants against light-induced retinal degeneration. Bioorg Med Chem Lett 20:7405–7409. https://doi.org/10.1016/j.bmcl.2010.10.037

    Article  CAS  PubMed  Google Scholar 

  24. Beaulieu R, Gottis S, Meyer C, Grand E, Deveaux V, Kovensky J (2015) Cholesteryl and diosgenyl glycosteroids: synthesis and characterization of new smectic liquid crystals. Carbohydr Res 404:70–78. https://doi.org/10.1016/j.carres.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  25. Ali-Rachedi F, Chambert S, Ferkous F, Queneau Y, Cowling SJ, Goodby JW (2009) The unusual self-organising behaviour of a glycosteroidal bolaphile. Chem Commun 42:6355–6357. https://doi.org/10.1039/B908235B

    Article  Google Scholar 

  26. Xu R, Alirachedi F, Chambert S, Ferkous F, Queneau Y, Cowling SJ, Davis EJ, Goodby JW (2015) Self-organizing behaviour of glycosteroidal bolaphiles: insights into lipidic microsegregation. Org Biomol Chem 13:783–792. https://doi.org/10.1039/C4OB02191F

    Article  CAS  PubMed  Google Scholar 

  27. Yang Z, Xu R, Ali-Rachedi F, Xavier NM, Chambert S, Soulère L, Ahmar M, Mackenzie G, Davis EJ, Goodby JW, Cowling SJ, Queneau Y (2017) Liquid crystalline glycosteroids and acyl steroid glycosides (ASG). Liq Cryst 44:2089–2107. https://doi.org/10.1080/02678292.2017.1346211

    Article  CAS  Google Scholar 

  28. Trombotto S, Danel M, Fitremann J, Bouchu A, Queneau Y (2003) Straightforward Route for Anchoring a Glucosyl Moiety onto Nucleophilic Species: Reaction of Amines and Alcohols with Carboxymethyl 3,4,6-Tri-O-acetyl-α-d-glucopyranoside 2-O-Lactone. J Org Chem 68:6672–6678. https://doi.org/10.1021/jo0300237

    Article  CAS  PubMed  Google Scholar 

  29. Pierre R, Chambert S, Alirachedi F, Danel M, Trombotto S, Doutheau A, Queneau Y (2008) Carboxymethyl glucosides and carboxymethyl glucoside lactones: A detailed study of their preparation by oxidative degradation of disaccharides. C R Chimie 11:61–66. https://doi.org/10.1016/j.crci.2007.03.013

    Article  CAS  Google Scholar 

  30. Chambert S, Doutheau A, Queneau Y, Cowling SJ, Goodby JW, Mackenzie G (2007) Synthesis and Thermotropic Behavior of Simple New Glucolipid Amides. J Carbohydr Chem 26:27–39. https://doi.org/10.1080/07328300701252565

    Article  CAS  Google Scholar 

  31. Ziegler FE, Brown EG, Sobolov SB (1990) Single-step removal of the allyl ether protecting group with hydridotetrakis(triphenylphosphine)rhodium [(Ph3P)4RhH] and trifluoroacetic acid. J Org Chem 55:3691–3693. https://doi.org/10.1021/jo00298a065

    Article  CAS  Google Scholar 

  32. Chatterjee AK, Choi TL, Sanders DP, Grubbs RH (2003) A General Model for Selectivity in Olefin Cross Metathesis. J Am Chem Soc 125:11360–11370. https://doi.org/10.1021/ja0214882

    Article  CAS  PubMed  Google Scholar 

  33. Biswas K, M. Coltart D, Danishefsky SJ, (2002) Construction of carbohydrate-based antitumor vaccines: synthesis of glycosyl amino acids by olefin cross-metathesis. Tetrahedron Lett 43:6107–6110. https://doi.org/10.1016/S0040-4039(02)01336-9

    Article  CAS  Google Scholar 

  34. Ali-Rachedi F (2022). Ru-based Cross Metathesis in the Synthesis of Glycosteroids Org Prep Proced Int. https://doi.org/10.1080/00304948.2022.2132804

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by The General Directorate for Scientific Research and Technological Development (DG-RSDT), Algerian Ministry of Scientific Research, for a grant to FAR. Financial support from the Ministère de la Recherche et de l’Enseignement Supérieur et le CNRS is also gratefully acknowledged. The authors acknowledge also the support from the colleagues responsible for the analytical facilities (Centre de Spectrométrie de Masse and Centre Commun de resonance Magnétique Nucléaire) of the University Claude Bernard).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fahima Ali-Rachedi or Yves Queneau.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali-Rachedi, F., Cowling, S.J., Chambert, S. et al. Synthesis and Structural Characterisation of Some Carbohydrate Steroid Hybrids. Chemistry Africa 6, 2419–2428 (2023). https://doi.org/10.1007/s42250-023-00658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00658-8

Keywords

Navigation