Skip to main content
Log in

Preparation and Characterization of ZnFe2O4/Mn2O3 Nanocatalysts for the Degradation of Nitrobenzene

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This study reports the synthesis of pure ZnFe2O4, pure Mn2O3 nanoparticles and ZnFe2O4/Mn2O3 nanocomposites by a simple coprecipitation method. The prepared samples were characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption/desorption, and photoluminescence spectroscopy (PL). The prepared samples were further applied as photocatalysts for UV-exposed degradation of nitrobenzene at 254 nm. The photocatalytic performance showed that ZnFe2O4/Mn2O3 nanocomposites with various Mn2O3 content exhibited a higher activity compared to that of pure ZnFe2O4 and Mn2O3. Furthermore, among the prepared nanocomposites, the best photocatalytic performance was exhibited by 0.9ZnFe2O4/0.1Mn2O3 nanocomposites. The improved photocatalytic activity was mainly attributed to the separation of electron–hole pairs, as verified by PL analysis. To achieve the highest degradation rate, the photodegradation reaction was carried out in the presence of various catalyst doses, in acidic, neutral, and basic mediums and at different reaction temperatures. Finally, the compounds produced from the photodegradation reaction were determined by applying the optimal experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. Organization WH (2003) Environmental health criteria 230, nitrobenzene. World Health Organization Report, Geneva

    Google Scholar 

  2. Fessi N et al (2020) Pickering emulsions of fluorinated TiO2: a new route for intensification of photocatalytic degradation of nitrobenzene. Langmuir 36(45):13545–13554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leng H et al (2023) Degradation of nitrobenzene in 3D stack Z-scheme photoelectrocatalytic system: degradation condition, pathway analysis and synergistic mechanism. Process Saf Environ Prot 169:34–47

    Article  CAS  Google Scholar 

  4. Tayade RJ, Kulkarni RG, Jasra RV (2006) Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2. Ind Eng Chem Res 45(3):922–927

    Article  CAS  Google Scholar 

  5. Nitoi I et al (2015) UV–Vis photocatalytic degradation of nitrobenzene from water using heavy metal doped titania. J Ind Eng Chem 21:677–682

    Article  CAS  Google Scholar 

  6. Hu W, Wu F, Liu W (2022) Facile synthesis of Z-scheme Bi2O3/Bi2WO6 composite for highly effective visible-light-driven photocatalytic degradation of nitrobenzene. Chem Phys 552:111377

    Article  CAS  Google Scholar 

  7. Ahmed SN, Haider W (2018) Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29(34):342001

    Article  PubMed  Google Scholar 

  8. Baek S, Ghaffari Y, Bae J (2022) Synthesis of Fe2O3/Mn2O3 nanocomposites and impregnated porous silicates for dye removal: insights into treatment mechanisms. Catalysts 12(9):1045

    Article  CAS  Google Scholar 

  9. Reynoso-Soto EA et al (2013) Photocatalytic degradation of nitrobenzene using nanocrystalline TiO2 photocatalyst doped with Zn ions. J Mex Chem Soc 57(4):298–305

    CAS  Google Scholar 

  10. Tahir MB et al (2020) Role of nanotechnology in photocatalysis. Reference module in materials science and materials engineering

  11. Guo Q et al (2018) The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation. Solid State Sci 78:95–106

    Article  CAS  Google Scholar 

  12. Chen Y et al (2018) Preparation and photocatalytic performance of F-TiO2 photocatalyst. In: IOP conference series: earth and environmental science. IOP Publishing

  13. Sukhadeve G et al (2023) Photocatalytic hydrogen production, dye degradation, and antimicrobial activity by Ag–Fe co-doped TiO2 nanoparticles. J Mol Liq 369:120948

    Article  CAS  Google Scholar 

  14. Sidiqua MA et al (2023) Synthesis of magnetic ZnFe2O4-reduced graphene oxide nanocomposite photocatalyst for the visible light degradation of cationic textile dyes. Nanotechnol Environ Eng 1–11

  15. Nguyen NTT et al (2023) Green synthesis of ZnFe2O4@ ZnO nanocomposites using Chrysanthemum spp. floral waste for photocatalytic dye degradation. J Environ Manag 326:116746

    Article  CAS  Google Scholar 

  16. Huang R et al (2019) Environmentally benign synthesis of Co3O4-SnO2 heteronanorods with efficient photocatalytic performance activated by visible light. J Colloid Interface Sci 542:460–468

    Article  CAS  PubMed  Google Scholar 

  17. Israr M et al (2020) Multifunctional MgFe2O4/GNPs nanocomposite: graphene-promoted visible light driven photocatalytic activity and electrochemical performance of MgFe2O4 nanoparticles. Solid State Sci 110:106363

    Article  CAS  Google Scholar 

  18. Toloman D et al (2019) Photocatalytic activity of SnO2-TiO2 composite nanoparticles modified with PVP. J Colloid Interface Sci 542:296–307

    Article  CAS  PubMed  Google Scholar 

  19. Yadav N et al (2018) Impact of collected sunlight on ZnFe2O4 nanoparticles for photocatalytic application. J Colloid Interface Sci 527:289–297

    Article  CAS  PubMed  Google Scholar 

  20. Li X et al (2018) Fe2O3/ZnO/ZnFe2O4 composites for the efficient photocatalytic degradation of organic dyes under visible light. Solid State Sci 80:6–14

    Article  CAS  Google Scholar 

  21. Das KK et al (2020) Enhanced photocatalytic activities of polypyrrole sensitized zinc ferrite/graphitic carbon nitride nn heterojunction towards ciprofloxacin degradation, hydrogen evolution and antibacterial studies. J Colloid Interface Sci 561:551–567

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J et al (2022) Environment-friendly ternary ZnO/ZnFe2O4/TiO2 composite photocatalyst with synergistic enhanced photocatalytic activity under visible-light irradiation. Solid State Sci 129:106913

    Article  CAS  Google Scholar 

  23. Aridi A, Awad R, Khalaf A (2021) Synthesis and characterization of ZnFe2O4/Mn2O3 nanocomposites. Appl Phys A 127(3):1–16

    Article  Google Scholar 

  24. Alsayed Z, Badawi M, Awad R (2019) Characterization of zinc ferrite nanoparticles capped with different PVP concentrations. J Electron Mater 48(8):4925–4933

    Article  CAS  Google Scholar 

  25. Hermanto B et al (2018) The effect of calcination temperature on the formation and magnetic properties of ZnMn2O4 spinel. J Phys Conf Ser 985:012045

    Article  Google Scholar 

  26. Falak P, Hassanzadeh-Tabrizi S, Saffar-Teluri A (2017) Synthesis, characterization, and magnetic properties of ZnO–ZnFe2O4 nanoparticles with high photocatalytic activity. J Magn Magn Mater 441:98–104

    Article  CAS  Google Scholar 

  27. Thommes M et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  28. Swarnavalli GCJ et al (2019) Rapid one pot synthesis of Ag/ZnO nanoflowers for photocatalytic degradation of nitrobenzene. Mater Sci Eng B 247:114376

    Article  Google Scholar 

  29. Aridi A et al (2022) Photocatalytic activity of ZnFe2O4/NiO nanocomposites carried out under UV irradiation. Ceram Int 48:30905–30916

    Article  CAS  Google Scholar 

  30. Abdallah A, Noun M, Awad R (2021) Tuning the structural, optical and magnetic properties of PVP-capped NiO nanoparticles by gadolinium doping. Appl Phys A 127(10):1–15

    Article  Google Scholar 

  31. Zhang H et al (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiong K et al (2018) Heterostructured ZnFe2O4/Fe2TiO5/TiO2 composite nanotube arrays with an improved photocatalysis degradation efficiency under simulated sunlight irradiation. Nano Micro Lett 10(1):1–11

    Article  Google Scholar 

  33. Modi K et al (2016) Synthesis and characterization of ferrite-semiconductor nano composite for photocatalytic degradation of aqueous nitrobenzene solution. In: AIP conference proceedings. AIP Publishing LLC

  34. Pathak T et al (2013) Photocatalytic degradation of aqueous nitrobenzene solution using nanocrystalline Mg–Mn ferrites. In: materials science forum. Trans Tech Publ.

  35. Jin Y et al (2010) Preparation of mesoporous magnetic photocatalyst and its catalytic activity for degradation of nitrobenzene. Chin J Catal 31(5):597

    Google Scholar 

  36. Srilakshmi C, Saraf R, Shivakumara C (2015) Effective degradation of aqueous nitrobenzene using the SrFeO3-δ photocatalyst under UV illumination and its kinetics and mechanistic studies. Ind Eng Chem Res 54(32):7800–7810

    Article  CAS  Google Scholar 

  37. Jo W-K et al (2014) Enhanced photocatalytic degradation of aqueous nitrobenzene using graphitic carbon–TiO2 composites. Ind Eng Chem Res 53(9):3455–3461

    Article  CAS  Google Scholar 

  38. Ramírez JIDL et al (2020) Synthesis and characterization of zinc peroxide nanoparticles for the photodegradation of nitrobenzene assisted by UV-light. Catalysts 10(9):1041

    Article  Google Scholar 

  39. Mishra S et al (2022) Bimetallic Bi/Zn decorated hydrothermally synthesized TiO2 for efficient photocatalytic degradation of nitrobenzene. Catal Commun 172:106538

    Article  Google Scholar 

  40. Suthar M et al (2022) Nano-sized Ce-substituted hexagonal Co2–Y ferrite; a valuable catalyst for heterogeneous reduction of toxic nitro-organic pollutants. Ceram Int 48(24):37370–37382

    Article  CAS  Google Scholar 

  41. Ahmadi M et al (2022) Intensified photodegradation of nitrobenzene using ZnO-anchored spinel cobalt ferrite: environmental application, mechanism, and degradation pathway. J Water Process Eng 49:103064

    Article  Google Scholar 

  42. Azeez F et al (2018) The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep 8(1):1–9

    Article  Google Scholar 

  43. Fang M et al (2021) Recent progress on metal-enhanced photocatalysis: a review on the mechanism. Research

  44. Kumar A, Pandey G (2017) A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater Sci Eng Int J 1(3):1–10

    CAS  Google Scholar 

  45. Sun Y et al (2019) Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe–Cu bimetallic catalysts. Appl Catal B 244:1–10

    Article  CAS  Google Scholar 

  46. Baynosa ML et al (2020) Eco-friendly synthesis of recyclable mesoporous zinc ferrite@ reduced graphene oxide nanocomposite for efficient photocatalytic dye degradation under solar radiation. J Colloid Interface Sci 561:459–469

    Article  CAS  PubMed  Google Scholar 

  47. Shokouhimehr M (2015) Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics. Catalysts 5(2):534–560

    Article  CAS  Google Scholar 

  48. Chen W-S, Chen J-Y (2021) Photocatalytic decomposition of nitrobenzene in aqueous solution by Ag/Cu2O assisted with persulfate under visible light irradiation. Photochem 1(2):220–236

    Article  Google Scholar 

  49. Whang T-J et al (2012) UV-irradiated photocatalytic degradation of nitrobenzene by titania binding on quartz tube. Int J Photoenergy 2012:1–8

    Article  Google Scholar 

  50. Yang Z et al (2019) Activation of zero-valent iron through ball-milling synthesis of hybrid Fe0/Fe3O4/FeCl2 microcomposite for enhanced nitrobenzene reduction. J Hazard Mater 368:698–704

    Article  CAS  PubMed  Google Scholar 

  51. Villegas VAR et al (2020) Synthesis and characterization of magnetite nanoparticles for photocatalysis of nitrobenzene. J Saudi Chem Soc 24(2):223–235

    Article  Google Scholar 

  52. Qiao J, Jiao W, Liu Y (2021) Degradation of nitrobenzene-containing wastewater by sequential nanoscale zero valent iron-persulfate process. Green Energy Environ 6(6):910–919

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in the Advanced Nanomaterials Research Lab and Specialized Materials Science Lab at Beirut Arab University in collaboration with Kamal A. Chair Central Research Science Laboratory (KAS CRSL) and Inorganic and Organometallic Coordination Chemistry Laboratory (LCIO) at the American University of Beirut and Lebanese University, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amani Aridi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 157 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aridi, A., Naoufal, D., El-Rassy, H. et al. Preparation and Characterization of ZnFe2O4/Mn2O3 Nanocatalysts for the Degradation of Nitrobenzene. Chemistry Africa 6, 1913–1926 (2023). https://doi.org/10.1007/s42250-023-00609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00609-3

Keywords

Navigation