Skip to main content
Log in

Jurinea humilis DC. Polar Extract: HPLC Analysis, Photoprotective, Antioxidant Activities and Bioactive Content

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The use of botanical antioxidants to protect human skin from the harmful effects of ultraviolet radiation (UVR) opens the door to new and exciting avenues of research in photoprotection. Besides, for the sake of long-term sustainability, this strategy is both environmentally and human-friendly. To that end, the current study focuses on the polar extract (n-butanol) of Jurinea humilis DC. Several spectrophotometric methods were used to determine the total bioactive content of this extract. HPLC analysis was also used to determine the chemical profile of Jurinea humilis n-butanol extract. In addition, the antioxidant capacity of the sample was determined using the phosphomolybdenum method, as well as DPPH and H2O2 scavenging activities. The sun protection factor (SPF) was calculated using Mansur's dilution method, to assess photoprotective activity. The results showed that polar extract contained a high level of polyphenols, specifically phenolic content (171.18 ± 1.06 mg GAE/g extract), flavonol content (128.62 ± 4.42 mg RE/g extract), and flavonoid content (109.46 ± 0.25 mg QE/g extract), as well as potential antioxidant activity using phosphomolybdenum method (199.72 ± 3.71 mg AAE/g extract), DPPH inhibition (> 90%) and H2O2 scavenging activity (> 70%). Furthermore, at a concentration of 2 mg/mL, it has higher photoprotective properties, with a maximum SPF of 36.22 ± 0.07. Several polyphenols were discovered for the first time in the active extract using HPLC analysis. Therefore, Jurinea humilis polar extract appears to be a promising cosmetic ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rai S, Rai G, Kumar A (2022) Eco-evolutionary impact of ultraviolet radiation (UVR) exposure on microorganisms, with a special focus on our skin microbiome. Microbiol Res 260:127044. https://doi.org/10.1016/j.micres.2022.127044

    Article  CAS  PubMed  Google Scholar 

  2. Rai SR, Deep A, Tasduq AS (2022) Herbal products as skincare therapeutic agents against ultraviolet radiation-induced skin disorders. J Ayurveda Integr Med 13:100500. https://doi.org/10.1016/j.jaim.2021.07.016

    Article  CAS  Google Scholar 

  3. Farris PK, Valacchi G (2022) Ultraviolet light protection: is it really enough? Antioxidants 11(8):1484. https://doi.org/10.3390/antiox11081484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guan LL, Lim HW, Mohammad TF (2021) Sunscreens and photoaging: a review of current literature. Am J Clin Dermatol 22:819–828. https://doi.org/10.1007/s40257-021-00632-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Miranda LLR, Harvey KE, Ahmed A, Harvey SC (2021) UV-filter pollution: current concerns and future prospects. Environ Monit Assess 193:840. https://doi.org/10.1007/s10661-021-09626-6

    Article  PubMed  Google Scholar 

  6. Ma Y, Yoo J (2021) History of sunscreen: an updated view. J Cosmet Dermatol 20:1044–1049. https://doi.org/10.1111/jocd.14004

    Article  PubMed  Google Scholar 

  7. Downs CA, Di Nardo JC, Stien D, Rodrigues AMS, Lebaron P (2021) Benzophenone accumulates over time from the degradation of octocrylene in commercial sunscreen products. Chem Res Toxicol 34:1046–1054. https://doi.org/10.1021/acs.chemrestox.0c00461

    Article  CAS  PubMed  Google Scholar 

  8. Huang Y, Law JCF, Lam TK, Leung KSY (2021) Risks of organic UV filters: a review of environmental and human health concern studies. Sci Total Environ 755:142486. https://doi.org/10.1016/j.scitotenv.2020.142486

    Article  CAS  PubMed  Google Scholar 

  9. Duis K, Junker T, Coors A (2022) Review of the environmental fate and effects of two UV filter substances used in cosmetic products. Sci Total Environ 808:151931. https://doi.org/10.1016/j.scitotenv.2021.151931

    Article  CAS  PubMed  Google Scholar 

  10. Jesus A, Sousa E, Cruz MT, Cidade H, Lobo JMS, Almeida IF (2022) UV filters: challenges and prospects. Pharmaceuticals 15(3):263. https://doi.org/10.3390/ph15030263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abdi SAH, Ali A, Sayed SF, Nagarajan S, Abutahir AP, Ali A (2022) Sunscreen ingredient octocrylene’s potency to disrupt vitamin D synthesis. Int J Mol Sci 23(17):10154. https://doi.org/10.3390/ijms231710154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leccia MT, Lebbe C, Claudel JP, Narda M, Basset-Seguin N (2019) New vision in photoprotection and photorepair. Dermatol Ther (Heidelb) 9:103–115. https://doi.org/10.1007/s13555-019-0282-5

    Article  PubMed  Google Scholar 

  13. Krutmann J, Passeron T, Gilaberte Y, Granger C, Leone G, Narda M, Schalka S, Trullas C, Masson P, Lim HW (2020) Photoprotection of the future: challenges and opportunities. J Eur Acad Dermatol Venereol 34:447–454. https://doi.org/10.1111/jdv.16030

    Article  CAS  PubMed  Google Scholar 

  14. Milito A, Castellano I, Damiani E (2021) From sea to skin: is there a future for natural photoprotectants? Mar Drugs 19:379. https://doi.org/10.3390/md19070379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He H, Li A, Li S, Tang J, Li L, Xiong L (2021) Natural components in sunscreens: topical formulations with sun protection factor (SPF). Biomed Pharmacother 134:111161. https://doi.org/10.1016/j.biopha.2020.111161

    Article  CAS  PubMed  Google Scholar 

  16. Segueni N, Akkal S, Benlabed K, Nieto G (2022) Potential use of propolis in phytocosmetic as phytotherapeutic constituent. Molecules 27(18):5833. https://doi.org/10.3390/molecules27185833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Resende DISP, Jesus A, Sousa Lobo JM, Sousa E, Cruz MT, Cidade H, Almeida IF (2022) Up-to-date overview of the use of natural ingredients in sunscreens. Pharmaceuticals 15(3):372. https://doi.org/10.3390/ph15030372

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang T, Zhao J, Yang Z, Xiong L, Li L, Gu Z, Li Y (2022) Polyphenolic sunscreens for photoprotection. Green Chem 24:3605–3622. https://doi.org/10.1039/d1gc04828g

    Article  CAS  Google Scholar 

  19. Ma EZ, Khachemoune A (2022) Flavonoids and their therapeutic applications in skin diseases. Arch Dermatol Res. https://doi.org/10.1007/s00403-022-02395-3

    Article  PubMed  Google Scholar 

  20. Labille J, Catalano R, Slomberg D, Motellier S, Pinsino A, Hennebert P, Santaella C, Bartolomei V (2020) Assessing sunscreen lifecycle to minimize environmental risk posed by nanoparticulate UV-filters a review for safer-by-design products. Front Environ Sci 8:00101. https://doi.org/10.3389/fenvs.2020.00101

    Article  Google Scholar 

  21. Pawlowski S, Petersen-Thiery M (2020) Sustainable sunscreens: a challenge between performance, animal testing ban, and human and environmental safety. Handbook of Environmental Chemistry, vol 94. Springer, Berlin, pp 185–207

    Google Scholar 

  22. Pawlowski S, Herzog B, Sohn M, Petersen-Thiery M, Acker S (2021) EcoSun pass: a tool to evaluate the ecofriendliness of UV filters used in sunscreen products. Int J Cosmet Sci 43:201–210. https://doi.org/10.1111/ics.12681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fuentes JL, Pedraza Barrera CA, Villamizar Mantilla DA, Flórez González SJ, Sierra LJ, Ocazionez RE, Stashenko EE (2022) Flower extracts from ornamental plants as sources of sunscreen ingredients: determination by in vitro methods of photoprotective efficacy, antigenotoxicity and safety. Molecules 27(17):5525. https://doi.org/10.3390/molecules27175525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abreu S, Ferreira da Silva RM, da Cruz J, Filho I, Alves C, de Lima M (2022) Photoprotective, biological activities and chemical composition of the non-toxic hydroalcoholic extract of Clarisia racemosa with cosmetic and pharmaceutical applications. Ind Crops Prod 180:0926–6690. https://doi.org/10.1016/j.indcrop.2022.114762

    Article  CAS  Google Scholar 

  25. Amparo TR, Peixoto da Silva AC, Seibert JB, Santos da Silva D, Rebello V, dos Santos M, Abreu Vieira PM, Brandão GC, Bianco de Souza GH, ManeiraCorrêa Santos BA (2022) In vitro and in silico investigation of the photoprotective and antioxidant potential of Protium spruceanum leaves and its main flavonoids. J Photochem Photobiol A Chem 431:114037. https://doi.org/10.1016/j.jphotochem.2022.114037

    Article  CAS  Google Scholar 

  26. Opriş O, Lung I, Soran M-L, Stegarescu A, Cesco T, Ghendov-Mosanu A, Podea P, Sturza R (2022) Efficient extraction of total polyphenols from apple and investigation of Its SPF properties. Molecules 27(5):1679. https://doi.org/10.3390/molecules27051679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aglaia S, Nadja K, Michael G, Alexander S, Georgy L, Svetlana L, Eleonora G, Thomas B, von Eckhard RS (2019) Phylogeny of the Eurasian genus Jurinea (Asteraceae: Cardueae): support for a monophyletic genus concept and a first hypothesis on overall species relationships. Taxon. https://doi.org/10.1002/tax.12027

    Article  Google Scholar 

  28. Quezel P, Santa S (1963) Nouvelle flore de l’Algérie et des régions désertiques méridionales. Editions du C.N.R.S, Paris. Tome II, pp. 1004

  29. Pratap S, Rajendra S, Nitin S, Om Prakash S, Naresh K (2016) A review of genus: Jurinea. Int J Life Sci Sci Res 2:23–30

    Google Scholar 

  30. Alamgeer A, Uttra M, Ahsan H, Hasan UH, Chaudhary MA (2018) Traditional medicines of plant origin used for the treatment of inflammatory disorders in Pakistan: a review. J Tradit Chin Med 38(4):636–656. https://doi.org/10.1016/S0254-6272(18)30897-5

    Article  CAS  PubMed  Google Scholar 

  31. Vahideh A, Jalal P, Tahereh H (2021) Phytochemical compounds from Jurinea macrocephala subsp.elbursensis and their cytotoxicity evaluation. S Afr J Bot 137:399–405. https://doi.org/10.1016/j.sajb.2020.11.011

    Article  CAS  Google Scholar 

  32. Rustaiyan A, Faridchehr A (2021) Constituents and biological activities of selected genera of the Iranian Asteraceae family. J Herb Med 25:100405. https://doi.org/10.1016/j.hermed.2020.100405

    Article  Google Scholar 

  33. Atabaki V, Seydi E, Hosseinabadi T, Pourahmad J, Ramezani M, Samiei F (2022) Toxicity effect of sesquiterpene lactones from Jurinea gabrieliae bornm on mitochondria isolated from U87 cells. Nat Prod Res 36(4):1073–1077. https://doi.org/10.1080/14786419.2020.1845675

    Article  CAS  PubMed  Google Scholar 

  34. Perihan G, Sengul D, Gözde GM, Kubra U, Ebru U, Mükerrem Y (2022) Isolation, characterization and in silico studies of secondary metabolites from Jurinea macrocephala DC with antiproliferative activity. Chem Biodivers https://doi.org/10.1002/cbdv.202100867

  35. Shah NA, Khan MR, Naz K, Khan MA (2014) Antioxidant potential, DNA protection, and HPLC-DAD analysis of neglected medicinal Jurinea dolomiaea roots. BioMed Res Int 2014:1–10. https://doi.org/10.1155/2014/726241

    Article  Google Scholar 

  36. Trendafilova A, Todorova M, Kutova N, Guncheva M (2018) Phytochemical profile and anti-lipase activity of Balkan endemic Jurinea tzar-ferdinandii. Nat Prod Commun 13:1017–1020. https://doi.org/10.1177/1934578X1801300823

    Article  Google Scholar 

  37. Sarikahya NB, Okkali GS, Celenk VU, Mertoğlu E, Pekmez M, Arda N, Topcu G, Goren AC (2021) Identification of natural compounds of Jurinea species by LC-HRMS and GC-FID and their bioactivities. J Pharm Biomed 202:114146. https://doi.org/10.1016/j.jpba.2021.114146

    Article  CAS  Google Scholar 

  38. Mansur JDS, Breder MNR, Mansur MCDA (1986) Determinaçăo do fator de proteçăo solar por espectrofotometria. An Bras Dermatol 61:121–124

    Google Scholar 

  39. Sayre RM, Agin PP, Levee GJ, Marlowe E (1979) A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem Photobiol 29:559–566. https://doi.org/10.1111/j.1751-1097.1979.tb07090.x

    Article  CAS  PubMed  Google Scholar 

  40. Petretto GL, Di Pietro ME, Piroddi M, Pintore G, Mannu A (2022) Classification of pummelo (Citrus grandis) extracts through UV-VIS-based chemical fingerprint. Beverages 8:34. https://doi.org/10.3390/beverages8020034

    Article  CAS  Google Scholar 

  41. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    Article  CAS  Google Scholar 

  42. Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660. https://doi.org/10.1016/j.foodchem.2005.04.028

    Article  CAS  Google Scholar 

  43. Kumaran A, Karunakaran RJ (2007) In vitro antioxidant activities of methanol extracts of Phyllanthus species from India. LWT Food Sci Technol 40:344–352. https://doi.org/10.1016/j.lwt.2005.09.011

    Article  CAS  Google Scholar 

  44. Cefali LC, Franco JG, Nicolini GF, Ataide JA, Mazzola PG (2018) In vitro antioxidant activity and solar protection factor of blackberry and raspberry extracts in topical formulation. J Cosmet Dermatol 2018:1–6. https://doi.org/10.1111/jocd.12842

    Article  Google Scholar 

  45. Philippi K, Tsamandouras N, Grigorakis S, Makris DP (2016) Ultrasound-assisted green extraction of eggplant peel (Solanum melongena) polyphenols using aqueous mixtures of glycerol and ethanol: optimisation and kinetics. Environ Process 3:369–386. https://doi.org/10.1007/s40710-016-0140-8

    Article  Google Scholar 

  46. Yang XJ, Dang B, Fan MT (2018) Free and bound phenolic compound content and antioxidant activity of different cultivated blue highland barley varieties from the Qinghai-Tibet Plateau. Molecules 23:879. https://doi.org/10.3390/molecules23040879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phospho-molybdenum complex. Specific application to the determination of vitamin E1. Anal Biochem 269:337–341. https://doi.org/10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  48. Ismail HF, Hashim Z, Soon WT, Rahman NSA, Zainudin AN, Majid FAA (2017) Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. J Tradit Complement Med 7:452–465. https://doi.org/10.1016/j.jtcme.2016.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008. https://doi.org/10.1093/carcin/10.6.1003

    Article  CAS  PubMed  Google Scholar 

  50. Chu Y-C, Yang C-S, Cheng M-J, Fu S-L, Chen J-J (2022) Comparison of various solvent extracts and major bioactive components from unsalt-fried and salt-fried rhizomes of Anemarrhena asphodeloides for antioxidant, anti-α-glucosidase, and anti-acetylcholinesterase activities. Antioxidants 11(2):385. https://doi.org/10.3390/antiox11020385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. FDA, (2001) Department of Health, Education, and Welfare, USA. Sunscreen drug products for over the counter human use, Federal Register. 64/27687, pp 276

  52. Naczk M, Wanasundara PKJPD, Shahidi F (1992) Facile spectrophotometric quantification method of sinapic acid in hexane-extracted and methanol-ammonia-water-treated mustard and rapeseed meals. J Agric Food Chem 40:444–448. https://doi.org/10.1021/jf00015a016

    Article  CAS  Google Scholar 

  53. De Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brinkman UAT (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112:31–63. https://doi.org/10.1016/j.chroma.2006.01.019

    Article  CAS  PubMed  Google Scholar 

  54. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H (2018) Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol 31:332–336. https://doi.org/10.1159/000491755

    Article  CAS  PubMed  Google Scholar 

  55. Biswas S, Mukherjee PK, Kar A, Bannerjee S, Jana SN, Haldar PK, Sharma N (2021) Enhanced permeability and photoprotective potential of optimized p-coumaric acid-phospholipid complex loaded gel against UVA mediated oxidative stress. J Photochem Photobiol B: Biol 221:112246. https://doi.org/10.1016/j.jphotobiol.2021.112246

    Article  CAS  Google Scholar 

  56. Stevanato R, Bertelle M, Fabris S (2014) Photoprotective characteristics of natural polyphenols. Regul Toxicol Pharmacol 69:71–77. https://doi.org/10.1016/j.yrtph.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  57. Bhattacharya S, Sherje AP (2020) Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. J Drug Deliv Sci Technol 60:102000. https://doi.org/10.1016/j.jddst.2020.102000

    Article  CAS  Google Scholar 

  58. Suriyaprom S, Mosoni P, Leroy S, Kaewkod T, Desvaux M, Tragoolpua Y (2022) Antioxidants of fruit extracts as antimicrobial agents against pathogenic bacteria. Antioxidants 11(3):602. https://doi.org/10.3390/antiox11030602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383:132531. https://doi.org/10.1016/j.foodchem.2022.132531

    Article  CAS  PubMed  Google Scholar 

  60. Torres-Contreras AM, Garcia-Baeza A, Vidal-Limon HR, Balderas-Renteria I, Ramírez-Cabrera MA, Ramirez-Estrada K (2022) Plant secondary metabolites against skin photodamage: Mexican plants, a potential source of UV-radiation protectant molecules. Plants 11(2):220. https://doi.org/10.3390/plants11020220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Ministry of Higher Education and Scientific Research of Algeria (Grant no. PRFU N° B00L01UN180120220002).

Author information

Authors and Affiliations

Authors

Contributions

RA: conceptualization, methodology, investigation, writing—original drafts. HBK: resources, data curation, formal analysis, validation. MNA: resources, data curation, formal analysis, validation. ML: methodology, validation. NZ: methodology, validation. EHM and WT: software, validation. ID: resources, data curation, formal analysis, validation. SA and KM: resources, validation, supervision.

Corresponding author

Correspondence to Radia Ayad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 532 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayad, R., Keskinkaya, H.B., Atalar, M.N. et al. Jurinea humilis DC. Polar Extract: HPLC Analysis, Photoprotective, Antioxidant Activities and Bioactive Content. Chemistry Africa 6, 827–836 (2023). https://doi.org/10.1007/s42250-022-00525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00525-y

Keywords

Navigation