Skip to main content
Log in

Health Risk Assessment, Bioaccumulation Factors and Ecological Indices of Heavy Metals in Sediment, Fish and Water Along Asuoyeboah River, Kumasi: A Case Study

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This study was performed on the water, bottom sediment and fish from four communities along the Asuoyeboah River, Kumasi, Ghana to explore the concentration and health risks of heavy metals. The impact of heavy metals on the ecology and aquatic toxicity was assessed with bioaccumulation factors and ecological risk indices. The sources and extent of pollution were explored with principal component analysis by applying multivariate statistics in identifying the principal sources of pollution. The levels of metals in the water samples follow a decreasing order of Pb > Fe > Zn > Cd > Cr. The water from the Asuoyeboah River may be poisoned by accumulated amounts of Cd, Fe and Pb due to the mean concentration of Fe (0.8 mg/L), Cd (0.129 mg/L) and Pb (1.759 mg/L) being greater than the World Health Organization allowed values of 0.3, 0.03 and 0.01 mg/L, respectively. Estimates of the non-carcinogenic risk assessment showed that the water and fish samples pose little or no adverse health concerns to the population. However, Cr and Pb recorded carcinogenic risk of > 10–6 indicating a possibility of cancer risk. The water quality index assessment from this study also showed that the water in the Asuoyeboah river was of very poor quality. Researchers that may need more precise results while taking into account different water quality parameters might use the water quality index and multivariate statistics. The results of this study might aid the relevant authorities in formulating policies with strict regulations to safeguard water quality, ensure effective management and reduce surface water pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Rand G, Wells P, McCarty L (2020) Introduction to aquatic toxicology. Fundamentals of aquatic toxicology. CRC Press, pp 3–67

  2. Kumar V, Agrawal S, Bhat SA, Américo-Pinheiro JHP, Shahi SK, Kumar S (2022) Environmental impact, health hazards, and plant-microbes synergism in remediation of emerging contaminants. Clean Chem Eng 2:100030. https://doi.org/10.1016/j.clce.2022.100030

    Article  Google Scholar 

  3. Becher J, Englisch C, Griebler C, Bayer P (2022) Groundwater fauna downtown—drivers, impacts and implications for subsurface ecosystems in urban areas. J Contam Hydrol 248:104021. https://doi.org/10.1016/j.jconhyd.2022.104021

    Article  CAS  PubMed  Google Scholar 

  4. Ewusi A, Sunkari ED, Seidu J, Coffie-Anum E (2022) Hydrogeochemical characteristics, sources and human health risk assessment of heavy metal dispersion in the mine pit water–surface water–groundwater system in the largest manganese mine in Ghana. Environ Technol Innov 26:102312. https://doi.org/10.1016/j.eti.2022.102312

    Article  CAS  Google Scholar 

  5. Hagan GB, Minkah R, Yiran GAB, Dankyi E (2022) Assessing groundwater quality in peri-urban Accra, Ghana: implications for drinking and irrigation purposes. Groundw Sustain Dev 17:100761. https://doi.org/10.1016/j.gsd.2022.100761

    Article  Google Scholar 

  6. Sunkari ED, Seidu J, Ewusi A (2022) Hydrogeochemical evolution and assessment of groundwater quality in the Togo and Dahomeyan aquifers, Greater Accra Region Ghana. Environ Res 208:112679. https://doi.org/10.1016/j.envres.2022.112679

    Article  CAS  PubMed  Google Scholar 

  7. Akoto O, Samuel A, Gladys L, Sarah OAA, Apau J, Opoku F (2022) Assessment of groundwater quality from some hostels around Kwame Nkrumah University of Science and Technology. Sci Afr 17:e01361. https://doi.org/10.1016/j.sciaf.2022.e01361

    Article  CAS  Google Scholar 

  8. Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv 2(16):6380–6388

    Article  CAS  Google Scholar 

  9. Zhuang Q, Li G, Liu Z (2018) Distribution, source and pollution level of heavy metals in river sediments from South China. CATENA 170:386–396

    Article  CAS  Google Scholar 

  10. Fisher RM, Gupta V (2021) Heavy metals. StatPearls. StatPearls Publishing, Chennai

    Google Scholar 

  11. Manzoor J, Sharma M, Wani KA (2018) Heavy metals in vegetables and their impact on the nutrient quality of vegetables: a review. J Plant Nutr 41(13):1744–1763

    Article  CAS  Google Scholar 

  12. He L, Gao B, Luo X, Jiao J, Qin H, Zhang C, Dong Y (2018) Health risk assessment of heavy metals in surface water near a uranium tailing pond in Jiangxi Province South China. Sustainability 10(4):1113

    Article  Google Scholar 

  13. Borges RC, Dos Santos FV, Caldas VG, Lapa CMF (2015) Use of geographic information system (GIS) in the characterization of the Cunha Canal, Rio de Janeiro, Brazil: effects of the urbanization on water quality. Environ Earth Sci 73(3):1345–1356

    Article  CAS  Google Scholar 

  14. Lim M, Kim M-J (2010) Effectiveness of potassium ferrate (K2FeO4) for simultaneous removal of heavy metals and natural organic matters from river water. Water, Air, Soil Pollut 211(1):313–322

    Article  CAS  Google Scholar 

  15. Jiang JQ, Lloyd B (2002) Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res 36(6):1397–1408. https://doi.org/10.1016/s0043-1354(01)00358-x

    Article  CAS  PubMed  Google Scholar 

  16. Konieczny K, Sąkol D, Płonka J, Rajca M, Bodzek M (2009) Coagulation—ultrafiltration system for river water treatment. Desalination 240(1–3):151–159

    Article  CAS  Google Scholar 

  17. Kumari S, Kumar RN (2021) River water treatment using electrocoagulation for removal of acetaminophen and natural organic matter. Chemosphere 273:128571

    Article  CAS  PubMed  Google Scholar 

  18. Ahmed AKA, Marhaba TF (2017) Review on river bank filtration as an in situ water treatment process. Clean Technol Environ Policy 19(2):349–359

    Article  CAS  Google Scholar 

  19. Miranda LS, Wijesiri B, Ayoko GA, Egodawatta P, Goonetilleke A (2021) Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Res 202:117386

    Article  CAS  PubMed  Google Scholar 

  20. Pappoe C, Palm LMND, Denutsui D, Boateng CM, Danso-Abbeam H, Serfor-Armah Y (2022) Occurrence of microplastics in gastrointestinal tract of fish from the Gulf of Guinea Ghana. Mar Pollut Bull 182:113955. https://doi.org/10.1016/j.marpolbul.2022.113955

    Article  CAS  PubMed  Google Scholar 

  21. Khan MA, Khan N, Ahmad A, Kumar R, Singh A, Chaurasia D, Neogi S, Kumar V, Bhargava PC (2022) Potential health risk assessment, spatio-temporal hydrochemistry and groundwater quality of Yamuna river basin Northern India. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.136880

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mohiuddin M, Hossain MB, Ali MM, Kamal Hossain M, Habib A, Semme SA, Rakib MRJ, Rahman MA, Yu J, Al-Sadoon MK, Gulnaz A, Arai T (2022) Human health risk assessment for exposure to heavy metals in finfish and shellfish from a tropical estuary. J King Saud Univ Sci 34(4):102035. https://doi.org/10.1016/j.jksus.2022.102035

    Article  Google Scholar 

  23. Adani P, Sawale AA, Nandhagopal G (2022) Bioaccumulation of heavy metals in the food components from water and sediments in the coastal waters of Kalpakkam, Southeast coast of India. Environ Nanotechnol Monit Manag 17:100627. https://doi.org/10.1016/j.enmm.2021.100627

    Article  CAS  Google Scholar 

  24. Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. Poisoning in the modern world—new tricks for an old dog? IntechOpen

  25. Sharma V, Singh P (2015) Heavy metals pollution and it’s effect on environment and human health. Int J Recent Sci Res 6(12):7752–7755

    Google Scholar 

  26. Ahmadi A, Moore F, Keshavarzi B, Shahimi H, Hooda PS (2022) Bioaccumulation of selected trace elements in some aquatic organisms from the proximity of Qeshm Island ecosystems: human health perspective. Mar Pollut Bull 182:113966. https://doi.org/10.1016/j.marpolbul.2022.113966

    Article  CAS  PubMed  Google Scholar 

  27. Souza-Araujo Jd, Hussey NE, Hauser-Davis RA, Rosa AH, Lima MdO, Giarrizzo T (2022) Human risk assessment of toxic elements (As, Cd, Hg, Pb) in marine fish from the Amazon. Chemosphere 301:134575. https://doi.org/10.1016/j.chemosphere.2022.134575

    Article  CAS  PubMed  Google Scholar 

  28. Darko G, Azanu D, Logo NK (2016) Accumulation of toxic metals in fish raised from sewage-fed aquaculture and estimated health risks associated with their consumption. Cogent Environ Sci 2(1):1190116

    Article  Google Scholar 

  29. Cimboláková I, Uher I, Laktičová KV, Vargová M, Kimáková T, Papajová I (2020) Heavy metals and the environment. Environ Factors Affect Hum Heal 10

  30. Jia Z, Li S, Wang L (2018) Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Sci Rep 8(1):3256. https://doi.org/10.1038/s41598-018-21569-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  Google Scholar 

  32. Elekwachi CO, Andresen J, Hodgman TC (2014) Global use of bioremediation technologies for decontamination of ecosystems. J Bioremediat Biodegrad 5(4):1

    Article  Google Scholar 

  33. Javed M, Usmani N (2011) Accumulation of heavy metals in fishes: a human health concern. Int J Environ Sci 2(2):659–670

    CAS  Google Scholar 

  34. Akannam PO (2020) Flame atomic absorption spectrophotometric determination of heavy metals in some agricultural soils of Kwali Area Council, Abuja Nigeria. J Environ Sci Public Health 4(3):216–228

    Google Scholar 

  35. Kwaansa-Ansah EE, Nti SO, Opoku F (2019) Heavy metals concentration and human health risk assessment in seven commercial fish species from Asafo Market Ghana. Food Sci Biotechnol 28(2):569–579. https://doi.org/10.1007/s10068-018-0485-z

    Article  CAS  PubMed  Google Scholar 

  36. Singh J, Kalamdhad AS (2011) Effects of heavy metals on soil, plants, human health and aquatic life. Int J Res Chem Environ 1(2):15–21

    Google Scholar 

  37. Guo Z, Boeing WJ, Borgomeo E, Xu Y, Weng Y (2021) Linking reservoir ecosystems research to the sustainable development goals. Sci Total Environ 781:146769

    Article  CAS  PubMed  Google Scholar 

  38. Boateng TK, Opoku F, Acquaah SO, Akoto O (2015) Pollution evaluation, sources and risk assessment of heavy metals in hand-dug wells from Ejisu-Juaben Municipality Ghana. Environ Syst Res 4(1):18. https://doi.org/10.1186/s40068-015-0045-y

    Article  Google Scholar 

  39. Darko G, Dodd M, Nkansah MA, Aduse-Poku Y, Ansah E, Wemegah DD, Borquaye LS (2017) Distribution and ecological risks of toxic metals in the topsoils in the Kumasi metropolis Ghana. Cogent Environ Sci 3(1):1354965

    Article  Google Scholar 

  40. USEPA (2014) Sediment Sampling. United States Environmental Protection Agency, Georgia, United States, www.epa.gov/sites/production/files/2015-06/documents/Sediment-Sampling.pdf. (2014) www.epa.gov/sites/production/files/2015

  41. Hashmi MZ, Yu C, Shen H, Duan D, Shen C, Lou L, Chen Y (2014) Concentrations and human health risk assessment of selected heavy metals in surface water of the Siling Reservoir Watershed in Zhejiang Province China. Pol J Environ Stud 23(3):801–811

    Google Scholar 

  42. Zhong W, Zhang Y, Wu Z, Yang R, Chen X, Yang J, Zhu L (2018) Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicol Environ Saf 157:343–349

    Article  CAS  PubMed  Google Scholar 

  43. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

    Article  CAS  Google Scholar 

  44. Kavcar P, Sofuoglu A, Sofuoglu SC (2009) A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int J Hyg Environ Health 212(2):216–227

    Article  CAS  PubMed  Google Scholar 

  45. WHO (2017) Guidelines for drinking-water quality, vol 1. World Health Organization

  46. Kumar GP, Chandrasekhar T, Murty BS (2017) Assessment of groundwater quality status based on water quality index method in two coastal villages, Konada and Chintapalli of Vizianagaram district in Andhra Pradesh India. J Indian Chem Soc 94:1–9

    Google Scholar 

  47. Şener Ş, Şener E, Davraz A (2017) Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci Total Environ 584:131–144

    Article  PubMed  Google Scholar 

  48. Akoto O, Adopler A, Tepkor HE, Opoku F (2021) A comprehensive evaluation of surface water quality and potential health risk assessments of Sisa river Kumasi. Groundw Sustain Dev 15:100654. https://doi.org/10.1016/j.gsd.2021.100654

    Article  Google Scholar 

  49. Tian K, Wu Q, Liu P, Hu W, Huang B, Shi B, Zhou Y, Kwon B-O, Choi K, Ryu J (2020) Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environ Int 136:105512

    Article  CAS  PubMed  Google Scholar 

  50. Wardani N, Prartono T, Sulistiono S (2020) Sediments quality based on geo-accumulation index in heavy metals (Pb, Cu, and Cd) of cengkok coastal waters Banten bay. Jurnal Pendidikan IPA Indonesia 9(4):574–582

    Article  Google Scholar 

  51. Darko G, Boakye S, Akoto O, Rammika M, Gyamfi O (2015) Distribution and potential risks of heavy metals in fish, water and sediment. Environ Sci 11:74–82

    CAS  Google Scholar 

  52. Olubunmi FE, Olorunsola OE (2010) Evaluation of the status of heavy metal pollution of sediment of Agbabu bitumen deposit area Nigeria. Eur J Sci Res 41(3):373–382

    Google Scholar 

  53. Ganugapenta S, Nadimikeri J, Chinnapolla SRRB, Ballari L, Madiga R, Nirmala K, Tella LP (2018) Assessment of heavy metal pollution from the sediment of Tupilipalem Coast, southeast coast of India. Int J Sediment Res 33(3):294–302

    Article  Google Scholar 

  54. Williams JA, Antoine J (2020) Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index. Mar Pollut Bull 157:111288

    Article  CAS  PubMed  Google Scholar 

  55. Barbieri M, Sappa G, Vitale S, Parisse B, Battistel M (2014) Soil control of trace metals concentrations in landfills: a case study of the largest landfill in Europe, Malagrotta, Rome. J Geochem Explor 143:146–154

    Article  CAS  Google Scholar 

  56. Sanou A, Coulibaly S, Coulibaly M, N’Goran-N’dri S, Célestin Atse B (2021) Assessment of heavy metal contamination of fish from a fish farm by bioconcentration and bioaccumulation factors. Egypt J Aquat Biol Fish 25(1):821–841

    Article  Google Scholar 

  57. Qu M, Wang Y, Huang B, Zhao Y (2018) Source apportionment of soil heavy metals using robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR) receptor model. Sci Total Environ 626:203–210

    Article  CAS  PubMed  Google Scholar 

  58. WHO (2011) Guidelines for drinking-water quality. WHO Chron 38(4):104–108

    Google Scholar 

  59. Akoto O, Gyimah E, Zhan Z, Xu H, Nimako C (2019) Evaluation of health risks associated with trace metal exposure in water from the Barekese reservoir in Kumasi, Ghana. Hum Ecol Risk Assess: An Int J 26(4):1134–1148

    Article  Google Scholar 

  60. Osafo E (2011) The Effect of Small Scale Gold Mining activities on the Birim River in the East Akim Municipality of the Eastern Region. Dissertation, Kwame Nkrumah University of Science and Technology, Ghana

  61. Akoto O, Bruce T, Darko D (2008) Heavy metals pollution profiles in streams serving the Owabi reservoir. Afr J Environ Sci Technol 2(11):354–359

    Google Scholar 

  62. Mor S, Ravindra K, Dahiya R, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ Monit Assess 118(1–3):435–456

    Article  CAS  PubMed  Google Scholar 

  63. Danziger J, Mukamal KJ, Weinhandl E (2021) Associations of community water lead concentrations with hemoglobin concentrations and erythropoietin-stimulating agent use among patients with advanced CKD. J Am Soc Nephrol 32(10):2425–2434

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jiang JQ, Panagoulopoulos A, Bauer M, Pearce P (2006) The application of potassium ferrate for sewage treatment. J Environ Manag 79(2):215–220. https://doi.org/10.1016/j.jenvman.2005.06.009

    Article  CAS  Google Scholar 

  65. Kortatsi B (2004) Hydrochemistry of groundwater in the mining area of Tarkwa-Prestea, Ghana. PhD, University of Ghana, Ghana

  66. Kuma JS (2004) Is groundwater in the Tarkwa gold mining district of Ghana potable? Environ Geol 45(3):391–400

    Article  CAS  Google Scholar 

  67. Dadzie ES (2012) Assessment of heavy metal contamination of the Densu River, Weija from leachate. Kwame Nkrumah University of Science and Technology

  68. Frickel S, Elliott JR (2008) Tracking industrial land use conversions: a new approach for studying relict waste and urban development. Organ Environ 21(2):128–147

    Article  Google Scholar 

  69. Mann S, Rate A, Gilkes R (2002) Cadmium accumulation in agricultural soils in Western Australia. Water, Air, Soil Pollut 141(1–4):281–297

    Article  CAS  Google Scholar 

  70. Ashraf MW (2012) Levels of heavy metals in popular cigarette brands and exposure to these metals via smoking. Sci World J 2012:1–5

    Google Scholar 

  71. Mohammadi M, Sary AA, Khodadadi M (2011) Determination of heavy metals in two barbs, Barbus grypus and Barbus xanthopterus in Karoon and Dez Rivers, Khoozestan Iran. Bull Environ Contam Toxicol 87(2):158–162

    Article  CAS  PubMed  Google Scholar 

  72. Commission E (2006) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union 364 (365–324)

  73. Azaman F, Juahir H, Yunus K, Azid A, Kamarudin MKA, Toriman ME, Mustafa AD, Amran MA, Hasnam CNC, Saudi ASM (2015) Heavy metal in fish: analysis and human health—a review. J Teknol 77(1):61–69

    Google Scholar 

  74. Balachandran KK, Raj CL, Nair M, Joseph T, Sheeba P, Venugopal P (2005) Heavy metal accumulation in a flow restricted, tropical estuary. Estuar Coast Shelf Sci 65(1–2):361–370

    Article  CAS  Google Scholar 

  75. Effendi H, Kawaroe M, Lestari DF (2016) Ecological risk assessment of heavy metal pollution in surface sediment of Mahakam Delta, East Kalimantan. Procedia Environ Sci 33:574–582

    Article  CAS  Google Scholar 

  76. Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Appl Radiat Isot 69(10):1466–1474

    Article  CAS  PubMed  Google Scholar 

  77. Mukate S, Panaskar D, Wagh V, Muley A, Jangam C, Pawar R (2018) Impact of anthropogenic inputs on water quality in Chincholi industrial area of Solapur, Maharashtra, India. Groundw Sustain Dev 7:359–371

    Article  Google Scholar 

  78. Boateng TK, Opoku F, Akoto O (2019) Heavy metal contamination assessment of groundwater quality: a case study of Oti landfill site Kumasi. Appl Water Sci 9(2):33. https://doi.org/10.1007/s13201-019-0915-y

    Article  CAS  Google Scholar 

  79. Yan C, Zhuang T, Bai J, Wen X, Lu Q, Zhang L (2020) Assessment of as, cd, Zn, Cu and Pb pollution and toxicity in river wetland sediments and artificial wetland soils affected by urbanization in a Chinese delta. Wetlands 40(6):2799–2809

    Article  Google Scholar 

  80. Persad AS, Cooper GS (2008) Use of epidemiologic data in Integrated Risk Information System (IRIS) assessments. Toxicol Appl Pharmacol 233(1):137–145

    Article  CAS  PubMed  Google Scholar 

  81. Bodrud-Doza M, Islam AT, Ahmed F, Das S, Saha N, Rahman MS (2016) Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Sci 30(1):19–40

    Article  Google Scholar 

  82. Wątor K, Zdechlik R (2021) Application of water quality indices to the assessment of the effect of geothermal water discharge on river water quality–case study from the Podhale region (Southern Poland). Ecol Indic 121:107098

    Article  Google Scholar 

  83. Meers E, Unamuno V, Du Laing G, Vangronsveld J, Vanbroekhoven K, Samson R, Diels L, Geebelen W, Ruttens A, Vandegehuchte M (2006) Zn in the soil solution of unpolluted and polluted soils as affected by soil characteristics. Geoderma 136(1–2):107–119

    Article  CAS  Google Scholar 

  84. Sutherland RA, Tolosa CA, Tack F, Verloo M (2000) Characterization of selected element concentrations and enrichment ratiosin background and anthropogenically impacted roadside areas. Arch Environ Contam Toxicol 38(4):428–438

    Article  CAS  PubMed  Google Scholar 

  85. Zhang J, Liu C (2002) Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54(6):1051–1070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Researchers are grateful to the Department of Chemistry, Kwame Nkrumah University of Science and Technology, for the use of its facilities for this study and Opoku Adomako Kwabena of the Geomatic engineering department for his assistance with the study area design.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francis Opoku or Osei Akoto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonathan, A., Opoku, F. & Akoto, O. Health Risk Assessment, Bioaccumulation Factors and Ecological Indices of Heavy Metals in Sediment, Fish and Water Along Asuoyeboah River, Kumasi: A Case Study. Chemistry Africa 6, 1103–1115 (2023). https://doi.org/10.1007/s42250-022-00524-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00524-z

Keywords

Navigation