Skip to main content
Log in

Effectiveness of Potassium Ferrate (K2FeO4) for Simultaneous Removal of Heavy Metals and Natural Organic Matters from River Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study has investigated how to simultaneously remove both heavy metals (Cu, Mn, and Zn) and natural organic matters (NOM; humic acid and fulvic acid) from river water using potassium ferrate (K2FeO4), a multipurpose chemical acting as oxidant, disinfectant, and coagulant. In water sample including each 0.1 mM heavy metal, its removal efficiency ranged 28–99% for Cu, 22–73% for Mn, and 18–100% for Zn at the ferrate(VI) doses of 0.03–0.7 mM (as Fe). The removal efficiency of each heavy metal increased with increasing pH, whereas an overall temperature did not make any special effect on the reaction between the heavy metal and ferrate(VI). A high efficiency was achieved on the simultaneous treatment of heavy metals (0.1 mM) and NOM (10 mg/l) at the ferrate(VI) doses of 0.03–0.7 mM (as Fe): 87–100% (Cu), 31–81% (Mn), 11–100% (Zn), and 33–86% (NOM). In the single heavy metal solution, the optimum ferrate dose for treating 0.1 mM Cu or Mn was 0.1 mM (as Fe), while that for treating 0.1 mM Zn was 0.3 mM (as Fe). In the mixture of three heavy metals and NOM, on the other hand, 0.5 mM (as Fe) ferrate(VI) was determined as an optimum dose for removing both 0.1 mM heavy metals (Cu, Mn, and Zn) and 10 mg/l NOM. Prior to the addition of ferrate(VI) into the solution of heavy metals and NOM (HA or FA), complexes were formed by the reaction between divalent cations of heavy metals and negatively charged functional groups of NOM, enhancing the removal of both heavy metals and NOM by ferrate(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98, 2243–2257.

    Article  CAS  Google Scholar 

  • Alsheyab, M. A., & Munoz, A. H. (2006). Reducing the formation of trihalomethanes (THMs) by ozone combined with hydrogen peroxide (H2O2/O3). Desalination, 194, 121–126.

    Article  CAS  Google Scholar 

  • Alsheyab, M., Jiang, J. Q., & Stanford, C. (2009). On-line production of ferrate with an electrochemical method and its potential application for wastewater treatment—A review. Journal of Environmental Management, 90, 1350–1356.

    Article  CAS  Google Scholar 

  • Bartzatt, R., Cano, M., Johnson, L., & Nagel, D. (1992). Removal of toxic metals and nonmetals from contaminated water. Journal of Toxicology Environmental Health, Part A, 35(4), 205–210.

    Article  CAS  Google Scholar 

  • Cho, M., Lee, Y. H., Choi, W. Y., Chung, H. M., & Yoon, J. Y. (2006). Study on Fe(VI) species as a disinfectant: Quantitative evaluation and modeling for inactivating Escherichia coli. Water Research, 40, 3580–3586.

    Article  CAS  Google Scholar 

  • Choi, D. J., Park, C. H., & Park, H. K. (1998). A study on formation of aldehydes during ozonation of water containing humic acid. Journal of the Korean Society of Environmental Engineering, 20(3), 385–396.

    Google Scholar 

  • Delaude, L., & Laszlo, P. (1996). A novel oxidizing reagent based on potassium ferrate(VI). Journal of Organic Chemistry, 61, 6360–6370.

    Article  CAS  Google Scholar 

  • Fan, M. H., Brown, R. C., & Huang, C. P. (2002). Preliminary studies of the oxidation of arsenic(III) by potassium ferrate. International Journal of Environmental Pollution, 18(1), 91–96.

    Article  CAS  Google Scholar 

  • Graham, N., Jiang, C. C., Li, X. Z., & Jiang, J. Q. (2004). The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere, 55, 949–956.

    Article  CAS  Google Scholar 

  • Jain, A., Sharma, V. K., & Mbuya, O. S. (2009). Removal of arsenic by Fe(VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: Effect of pH and anions. Journal of Hazardous Material, 169, 339–344.

    Article  CAS  Google Scholar 

  • Jiang, J. Q., & Lloyd, B. (2002). Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Research, 36, 1397–1408.

    Article  CAS  Google Scholar 

  • Jiang, J. Q., & Wang, S. (2003). Inactivation of Escherichia coli with ferrate and sodium hypochlorite: A study on the disinfection performance and rate constant. In A. Vogelpohl (Ed.), Oxidation technology water wastewater, CUTEC-Series Publication No 57 (pp. 406–411). Clausthal-Zellerfeld: Papierflieger.

    Google Scholar 

  • Jiang, J. Q., Lloyd, B., & Grigore, L. (2001). Preparation and evaluation of potassium ferrate as an oxidant and coagulant for potable water treatment. Environmental Engineering Science, 18(5), 323–328.

    Article  CAS  Google Scholar 

  • Jiang, J. Q., Yin, Q., Zhou, J. L., & Pearce, P. (2005). Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters. Chemosphere, 61(4), 544–550.

    Article  CAS  Google Scholar 

  • Jiang, J. Q., Panagoulopoulos, A., Bauer, M., & Pearce, P. (2006a). The application of potassium ferrate for sewage treatment. Journal of Environmental Management, 79, 215–220.

    Article  CAS  Google Scholar 

  • Jiang, J. Q., Wang, S., & Panagoulopoulos, A. (2006b). The exploration of potassium ferrate(VI) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere, 63, 212–219.

    Article  CAS  Google Scholar 

  • Kazama, F. (1994). Inactivation of coliphage QB by potassium ferrate. FEMS Microbiology Letters, 118, 345–350.

    CAS  Google Scholar 

  • Kazama, F. (1995). Viral inactivation by potassium ferrate. Water Science and Technology, 31, 165–168.

    Article  CAS  Google Scholar 

  • Lee, Y., Um, I. H., & Yoon, J. (2003). Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environmental Science and Technology, 37, 5750–5756.

    Article  CAS  Google Scholar 

  • Li, C., Li, X. Z., & Graham, N. (2005). A study of the preparation and reactivity of potassium ferrate. Chemosphere, 61, 537–543.

    Article  CAS  Google Scholar 

  • Licht, S., Naschitz, V., Halperin, L., Halperin, N., Lin, L., Chen, J., et al. (2001). Analysis of ferrate(VI) compounds and super-iron Fe(VI) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization. Journal of Power Sources, 101, 167–176.

    Article  CAS  Google Scholar 

  • Lim, M., & Kim, M. J. (2009a). Application of ferrate(VI) to the removal of humic acid and heavy metals (Cu, Mn, and Zn). Journal of the Korean Society of Environmental Engineering (J. of KSEE), 31(6), 454–459.

    Google Scholar 

  • Lim, M., & Kim, M. J. (2009b). Removal of natural organic matter from river water using potassium ferrate(VI). Water, Air and Soil Pollution, 200(1–4), 181–189.

    Article  CAS  Google Scholar 

  • Lui, W., & Ma, J. (2002). Effects of ferrate(VI) preoxidation on the architecture of algal cells and the mechanism of enhanced coagulation. Acta Scientiae Circumstantiae, 22, 24–28.

    Google Scholar 

  • Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30, 261–278.

    Article  CAS  Google Scholar 

  • Nam, S. N., Kim, M. J., Jung, B. S., & Lee, Y. H. (2003). Synthesis of functionalized magnetic-impregnated ion exchange resin and its application for water treatment. Journal of the Korean Society of Environmental Engineering, 25(9), 1078–1084.

    Google Scholar 

  • Qu, J. H., Liu, H. J., Liu, S. X., & Lei, P. J. (2003). Reduction of fulvic acid in drinking water by ferrate. Journal of Environmental Engineering, 129(1), 17–24.

    Article  CAS  Google Scholar 

  • Rook, J. J. (1974). Formation of haloforms during chlorination of natural waters. Water Treatment Examination, 23, 234–240.

    Google Scholar 

  • Schreyer, J. M., Thompson, G. W., & Ockerman, L. T. (1950). Oxidation of chromium(III) with potassium ferrate(VI). Analytical Chemistry, 22(11), 691–692.

    Article  CAS  Google Scholar 

  • Seki, H., & Suzuki, A. (1995). Adsorption of heavy metal ions onto insolubilized humic acid. Journal of Colloid and Interface Science, 171, 490–494.

    Article  CAS  Google Scholar 

  • Sharma, V. K. (2002). Potassium ferrate(VI): An environmentally friendly oxidant. Advance in Environmental Research, 6, 143–156.

    Article  CAS  Google Scholar 

  • Sharma, V. K. (2007). Disinfection performance of Fe(VI) in water and wastewater: A review. Water Science and Technology, 55(1–2), 225–232.

    Article  CAS  Google Scholar 

  • Sharma, V. K. (2008). Oxidation transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): Kinetics assessment. Chemosphere, 73, 1379–1386.

    Article  CAS  Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformation, and remediation. Environment International, 35, 743–759.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Burnett, C. R., & Millero, F. J. (2001). Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media. Physical Chemistry Chemical Physics, 3(11), 2059–2062.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Mishra, S. K., & Nesnas, N. (2006). Oxidation of sulfonamide antimicrobials by ferrate(VI) [FeVIO 2−4 ]. Environmental Science and Technology, 40, 7222–7227.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Li, X. Z., Graham, N., & Doong, R. A. (2008). Ferrate(VI) oxidation of endocrine disruptors and antimicrobials in water. Journal of Water Supply: Research and Technology-AQUA, 57(6), 419–426.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Anquandah, G. A. K., Yngard, R. A., Kim, H., Fekete, J., Bouzek, J., et al. (2009). Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: A review on occurrence, fate, and treatment. Journal of Environmental Science and Health, Part A, 44, 423–442.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions (2nd ed., pp. 378–381). New York: Wiley.

    Google Scholar 

  • Stupin, D. Y., & Ozernoi, M. I. (2004). Removal of Ni(II) with sodium ferrate(VI) from EDTA-containing aqueous solutions. Russian Journal of Applied Chemistry, 77(8), 1312–1315.

    Article  CAS  Google Scholar 

  • Tomiyasu, H., Fukutomi, H., & Gordon, G. (1985). Kinetic and mechanism of ozone decomposition in basic aqueous solution. Inorganic Chemistry, 24, 2962–2966.

    Article  CAS  Google Scholar 

  • Waite, T. D. (1979). Feasibility of wastewater treatment with ferrate. Journal of the Environmental Engineering Division, 105, 1023–1026.

    CAS  Google Scholar 

  • Wood, R. H. (1958). The heat, free energy and entropy of ferrate(VI) ion. Journal of the American Chemical Society, 80, 2038–2041.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Foundation Grant (KRF-2005-041-D00422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, M., Kim, MJ. Effectiveness of Potassium Ferrate (K2FeO4) for Simultaneous Removal of Heavy Metals and Natural Organic Matters from River Water. Water Air Soil Pollut 211, 313–322 (2010). https://doi.org/10.1007/s11270-009-0302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0302-7

Keywords

Navigation