Skip to main content
Log in

α-FeOOH@Luffa Composite Used as a Cost-Effective, Robust, and Eco-Friendly Adsorbent Material to Remove Methyl Violet 10B From Water

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

α-FeOOH@Luffa composite was successfully prepared by the hydrothermal method to produce a new low-cost and environmentally friendly alternative adsorbent and adapt it for removing an organic dye from wastewater. α-FeOOH@Luffa was fabricated by hydrothermal technique in an alkaline medium using Nitrate ferric and Luffa Cylindrica fibers. The above composite was characterized using BET, pHPZC-determination, FTIR, X-ray diffraction, SEM, and its adsorptive performance was evaluated by applying it to adsorb the Methyl Violet 10B (MV10B) from an aqueous solution in batch mode. To achieve adequate elimination of this dye, six (6) operating factors, such as composite amount (50–400 mg), solution pH (3–9), adsorption time (10–60 min), medium temperature (293–323 K), MV10B initial concentration (10–100 mg L−1), and adsorbent particles size (50–450 μm) were optimized utilizing the fractional factorial design method. The modeling investigation envisages that the Methyl Violet 10B uptake process follows the pseudo-second-order model with a maximal adsorbent amount reaching 243.9 mg g−1. The thermodynamic investigation reveals that the MV10B adsorption system is spontaneous and exothermic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13

Similar content being viewed by others

References

  1. Pakdel S, Akhlaghinia B, Mohammadinezhad A (2019) Fe3O4@Boehmite-NH2-CoII NPs: an environment friendly nanocatalyst for solvent free synthesis of coumarin derivatives through pechmann condensation reaction. Chem Afr 2(3):367–376. https://doi.org/10.1007/s42250-019-00042-5

    Article  CAS  Google Scholar 

  2. Jin X, Li Y, Jin T, Jiang J, Zhu Q, Yao J (2022) Facile and efficient synthesis of binary FeOOH/Fe2O3 composite as a high-performance anode material for Lithium-Ion batteries. J Alloys Compd 896:163026. https://doi.org/10.1016/j.jallcom.2021.163026

    Article  CAS  Google Scholar 

  3. Jabbar KQ, Barzinjy AA, Hamad SM (2022) Iron oxide nanoparticles: preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environ Nanotechnol Monit Manag 17:100661. https://doi.org/10.1016/j.enmm.2022.100661

    Article  CAS  Google Scholar 

  4. El Gaayda J, Ezzahra Titchou F, Oukhrib R, Karmal I, Abou Oualid H, Berisha A, Zazou H, Swanson C, Hamdani M, Ait Akbour R (2022) Removal of cationic dye from coloured water by adsorption onto hematite-humic acid composite: experimental and theoretical studies. Sep Purif Technol 288:120607. https://doi.org/10.1016/j.seppur.2022.120607

    Article  CAS  Google Scholar 

  5. Kaur A, Singh H, Kang TS, Singh S (2021) Sustainable preparation of Fe(OH)3 and α-Fe2O3 nanoparticles employing acacia catechu extract for efficient removal of Chromium (VI) from aqueous solution. Environ Nanotechnol Monit Manag 16:100593. https://doi.org/10.1016/j.enmm.2021.100593

    Article  CAS  Google Scholar 

  6. Azoudj GRY, Hamel KCS, Bessekhouad MBY, Trari M (2022) Photo—electrochemical and physical characterizations of the hetero—system—FeAlO 3/ZnO and its application for the oxydation of remazol under sunlight. Chem Afr. https://doi.org/10.1007/s42250-022-00420-6

    Article  Google Scholar 

  7. Djebli A, Boudjemaa A, Bendjeffal H, Mamine H, Metidji T, Bekakria H, Bouhedja Y (2020) Photocatalytic degradation of methyl orange using Zn@[Fe(CN)5NO] complex under sunlight irradiation. Inorg Nano-Metal Chem. https://doi.org/10.1080/24701556.2020.1735428

    Article  Google Scholar 

  8. Bendjeffal, H.; Guibedj, D.; Chastanet, G.; Letard, J. F.; Djazi, F.; Abbaci, A.; Guerfi, K.; Bouhedja, Y. SILAR deposition of Ni(Bpy)3X: {X = (NCS)2, (Fe(CN)5NO), and (Ag(CN)2)2} thin films on glass substrates. Synth. React. Inorg. Met. Nano-Metal Chem., 2016, 46 (12), 1741–1750. https://doi.org/10.1080/15533174.2015.1137055.

  9. Mamine H, Bendjeffal H, Metidji T, Djebli A, Rebbani N, Bouhedja Y (2019) Structural, optical and electrical properties of Ni(II)-2,2-bipyridine complexes thin films deposited on glass substrates. J Sci Adv Mater Dev 4(3):459–466. https://doi.org/10.1016/j.jsamd.2019.07.002

    Article  Google Scholar 

  10. Lin Z, Yang J, Jia X, Li Y, Song H (2020) Polydopamine/FeOOH-modified interface in carbon cloth/polyimide composites for improved mechanical/tribological properties. Mater Chem Phys 243:122677. https://doi.org/10.1016/j.matchemphys.2020.122677

    Article  CAS  Google Scholar 

  11. Hou P, Shi C, Wu L, Hou X (2016) Chitosan/Hydroxyapatite/Fe3O4 magnetic composite for metal-complex dye AY220 removal: recyclable metal-promoted fenton-like degradation. Microchem J. https://doi.org/10.1016/j.microc.2016.04.022

    Article  Google Scholar 

  12. Tella AC, Okoro HK, Sokoya SO, Adimula VO, Olatunji SO, Zvinowanda C, Ngila JC, Shaibu RO, Adeyemi OG (2020) Synthesis, characterization and antifungal activity of Fe(III) metal-organic framework and its nano-composite. Chem Afr 3(1):119–126. https://doi.org/10.1007/s42250-019-00102-w

    Article  CAS  Google Scholar 

  13. Yang X, Wang X, Zhao Y, Xu L, Wang T, Zhang X (2018) Preparation of recyclable BiOI/Luffa fiber composite and its highly efficient visible light photocatalytic properties. J Clean Prod 200:945–953. https://doi.org/10.1016/j.jclepro.2018.07.324

    Article  CAS  Google Scholar 

  14. Wu Z, Deng W, Tang S, Ruiz-Hitzky E, Luo J, Wang X (2021) Pod-Inspired MXene/Porous carbon microspheres with ultrahigh adsorption capacity towards crystal violet. Chem Eng J. https://doi.org/10.1016/j.cej.2021.130776

    Article  Google Scholar 

  15. Sunkara JR, Botsa SM (2019) SnO2/Fe2O3/Ag nanocomposite via hydrothermal approach: a novel highly efficient photodegradation of eosin yellow and brilliant green dyes under visible light irradiation. Chem Afr 2(4):635–644. https://doi.org/10.1007/s42250-019-00086-7

    Article  CAS  Google Scholar 

  16. Margha FH, Radwan EK, Badawy MI, Gad-Allah TA (2020) Bi2O3-BiFeO3 glass-ceramic: controllable β-/γ-Bi2O3 transformation and application as magnetic solar-driven photocatalyst for water decontamination. ACS Omega 5(24):14625–14634. https://doi.org/10.1021/acsomega.0c01307

    Article  CAS  Google Scholar 

  17. Vinogradova KA, Pishchur DP, Korolkov IV, Bushuev MB (2019) Magnetic properties and vapochromism of a composite on the base of an Iron(II) spin crossover complex. Inorg Chem Commun 105:82–85. https://doi.org/10.1016/j.inoche.2019.04.035

    Article  CAS  Google Scholar 

  18. Quinayá DCP, D’almeida JRM (2017) Nondestructive characterization of Epoxy matrix composites Reinforced with luffa Lignocellulosic Fibers. Rev Mater. https://doi.org/10.1590/s1517-707620170002.0181

    Article  Google Scholar 

  19. Xiong H, Zhang B, Cui C, Xu Y (2022) Polyaniline/FeOOH composite for removal of acid orange II from aqueous solutions. Mater Chem Phys 278:125701. https://doi.org/10.1016/j.matchemphys.2022.125701

    Article  CAS  Google Scholar 

  20. Li P, Du L, Jing J, Ding X, Shao S, Jiao W, Liu Y (2021) Preparation of FeOOH nanoparticles using an impinging stream-rotating packed bed and their catalytic activity for ozonation of nitrobenzene. J Taiwan Inst Chem Eng 127:102–108. https://doi.org/10.1016/j.jtice.2021.08.025

    Article  CAS  Google Scholar 

  21. Pervez MN, Fu D, Wang X, Bao Q, Yu T, Naddeo V, Tian H, Cao C, Zhao Y (2021) A Bifunctional α-FeOOH@GCA nanocomposite for enhanced adsorption of arsenic and photo fenton-like catalytic conversion of As(III). Environ Technol Innov 22:1–15. https://doi.org/10.1016/j.eti.2021.101437

    Article  CAS  Google Scholar 

  22. Ai H, Li X, Chen C, Xu L, Fu ML, Sun W, Yuan B (2022) Immobilization of β-FeOOH nanomaterials on the basalt fiber as a novel porous composite to effectively remove phosphate from aqueous solution. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2021.127815

    Article  Google Scholar 

  23. Wu J, Wang F, Zhao X, Zhu B, Gu Y (2021) Tunable nonlinear optical enhancement of α-FeOOH Nanorods/RGO composites. Results Phys 31:105056. https://doi.org/10.1016/j.rinp.2021.105056

    Article  Google Scholar 

  24. Ozola R, Krauklis A, Leitietis M, Burlakovs J (2019) FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environ Technol Innov 13:364–372

    Article  Google Scholar 

  25. Wu Y, Hu W, Xie R, Liu X, Yang D, Chen P, Zhang J, Zhang F (2018) Composite of nano-goethite and natural organic Luffa sponge as template: synergy of high efficiency adsorption and visible-light photocatalysis. Inorg Chem Commun 98:115–119. https://doi.org/10.1016/j.inoche.2018.09.032

    Article  CAS  Google Scholar 

  26. Ashok KG, Kalaichelvan K, Damodaran A (2020) Effect of nano fillers on mechanical properties of Luffa fiber epoxy composites. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1779898

    Article  Google Scholar 

  27. Kesraoui A, Bouzaabia S, Seffen M (2019) The combination of Luffa cylindrical fibers and metal oxides offers a highly performing hybrid fiber material in water decontamination. Environ Sci Pollut Res 26(12):11524–11534. https://doi.org/10.1007/s11356-018-1507-3

    Article  CAS  Google Scholar 

  28. Nguyen T, Loganathan P, Nguyen TV, Vigneswaran S, Ngo H (2020) Iron and zirconium modified Luffa fibre as an effective bioadsorbent to remove arsenic from drinking water. Chemosphere 258:127370. https://doi.org/10.1016/j.chemosphere.2020.127370

    Article  CAS  Google Scholar 

  29. Khedher O, Rigane G, Salem RB, Moussaoui Y (2020) Optimization of polyphenols recovery from Schinus Molle L peel using response surface methodology (RSM). Chem Afr 3(3):813–820. https://doi.org/10.1007/s42250-020-00170-3

    Article  CAS  Google Scholar 

  30. Ahmad R, Haseeb S (2016) Kinetic, isotherm and thermodynamic studies for the removal of Pb2+ Ion by a novel adsorbent Luffa Acutangula (LAPR). Desalin Water Treat 57(38):17826–17835. https://doi.org/10.1080/19443994.2015.1088476

    Article  CAS  Google Scholar 

  31. Ahmad R, Haseeb S (2015) Competitive adsorption of Cu2+ and Ni2+ on Luffa acutangula modified tetraethoxysilane (LAP-TS) from the aqueous solution: thermodynamic and isotherm studies. Groundw Sustain Dev 1(1–2):146–154. https://doi.org/10.1016/j.gsd.2016.03.001

    Article  Google Scholar 

  32. Benjelloun M, Miyah Y, Bouslamti R, Nahali L, Mejbar F, Lairini S (2022) The fast-efficient adsorption process of the toxic dye onto shells powders of walnut and peanut: experiments, equilibrium, thermodynamic, and regeneration studies. Chem Afr 5(2):375–393. https://doi.org/10.1007/s42250-022-00328-1

    Article  CAS  Google Scholar 

  33. Fan J, Zhao Z, Ding Z, Liu J (2018) Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation. RSC Adv 8(13):7269–7279. https://doi.org/10.1039/c7ra12615h

    Article  CAS  Google Scholar 

  34. Silva NF, Netto MS, Silva LFO, Mallmann ES, Lima EC, Ferrari V, Dotto GL (2021) Composite carbon materials from winery composted waste for the treatment of effluents contaminated with Ketoprofen and 2-Nitrophenol. J Environ Chem Eng 9(4):105421. https://doi.org/10.1016/j.jece.2021.105421

    Article  CAS  Google Scholar 

  35. da Schio RR, da Boit Martinello K, Netto MS, Silva LFO, Mallmann ES, Dotto GL (2021) Adsorption performance of food Red 17 dye using an eco-friendly material based on Luffa Cylindrica and Chitosan. J Mol Liq 349:118144. https://doi.org/10.1016/j.molliq.2021.118144

    Article  CAS  Google Scholar 

  36. Sarici Özdemİr Ç (2018) Adsorptive removal of methylene blue by fruit shell: isotherm studies. Fuller Nanotub Carbon Nanostruct 26(9):570–577. https://doi.org/10.1080/1536383X.2018.1472083

    Article  Google Scholar 

  37. Bendjeffal H, Ziati M, Aloui A, Mamine H, Djebli A, Bouhedja Y (2021) Adsorption and removal of hydroxychloroquine from aqueous media using algerian kaolin: full factorial optimisation, kinetic, thermodynamic, and equilibrium studies. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1887162

    Article  Google Scholar 

  38. Bekakria H, Bendjeffal H, Djebli A, Mamine H, Metidji T, Benrdjem Z (2020) Heterogeneous sono-photo-fenton degradation of methyl violet 10B using Fe2O3-Al2O3-Ga2O3 as a new photocatalyst. Inorg Nano-Metal Chem. https://doi.org/10.1080/24701556.2020.1852430

    Article  Google Scholar 

  39. Bendjeffal H, Djebli A, Mamine H, Metidji T, Dahak M, Rebbani N, Bouhedja Y (2018) Effect of the chelating agents on bio-sorption of hexavalent chromium using agave Sisalana Fibers. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2017.10.016

    Article  Google Scholar 

  40. Alizadeh M, Peighambardoust SJ, Foroutan R, Azimi H, Ramavandi B (2022) Surface magnetization of hydrolyzed Luffa cylindrica biowaste with cobalt ferrite nanoparticles for Facile Ni2+ removal from wastewater. Environ Res 212:113242. https://doi.org/10.1016/j.envres.2022.113242

    Article  CAS  Google Scholar 

  41. Oun AA, Kamal KH, Farroh K, Ali EF, Hassan MA (2021) Development of fast and high-efficiency sponge-gourd fibers (Luffa Cylindrica)/Hydroxyapatite composites for removal of lead and methylene blue. Arab J Chem 14(8):103281. https://doi.org/10.1016/j.arabjc.2021.103281

    Article  CAS  Google Scholar 

  42. Sarici-Özdemir Ç, Kiliç F (2018) Kinetics behavior of methylene blue onto agricultural waste. Part Sci Technol 36(2):194–201. https://doi.org/10.1080/02726351.2016.1240127

    Article  CAS  Google Scholar 

  43. Aloui A, Bouziane N, Bendjeffal H, Bouhedja Y (2021) Biosorption of some pharmaceutical compounds from aqueous medium by Luffa cylindrica fibers: application of the linear form of the Redlich—Peterson isotherm equation. Desalin Water Treat 214:367–378. https://doi.org/10.5004/dwt.2021.26736

    Article  CAS  Google Scholar 

  44. Wang Y, Xi Y, Tian H, Fang J, Quan X, Pei Y (2019) Effects of reaction conditions and liquid property on degradation of phenol by RGO/α-FeOOH supported on Al-MCM catalyst in heterogeneous photo-fenton system. Catal Today 335:460–467. https://doi.org/10.1016/j.cattod.2019.01.068

    Article  CAS  Google Scholar 

  45. Sarıcı Özdemir Ç (2019) Equilibrium, kinetic, diffusion and thermodynamic applications for dye adsorption with pine cone. Sep Sci Technol 54(18):3046–3054. https://doi.org/10.1080/01496395.2019.1565769

    Article  CAS  Google Scholar 

  46. Pinheiro ACN, Bernardino TS, Junior FEB, Lanza MRV, Barros WRP (2020) Enhanced electrodegradation of the sunset yellow dye in acid media by heterogeneous photoelectro-fenton process using Fe3O4 nanoparticles as a catalyst. J Environ Chem Eng 8(1):103621. https://doi.org/10.1016/j.jece.2019.103621

    Article  CAS  Google Scholar 

  47. Majhi D, Patra BN (2020) Polyaniline and sodium alginate nanocomposite: a PH-responsive adsorbent for the removal of organic dyes from water. RSC Adv 10(71):43904–43914. https://doi.org/10.1039/d0ra08125f

    Article  CAS  Google Scholar 

  48. Lakshmipat R, Chakraborty S, Chowdhury S, Saha PD (2011) Adsorption of crystal violet from aqueous solution onto NaOH- modified rice husk. Carbohydr Polym 86(4):1533–1541. https://doi.org/10.1016/j.carbpol.2011.06.058

    Article  CAS  Google Scholar 

  49. Iqbal MA, Lakshmipat R (2010) Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2010.03.041

    Article  Google Scholar 

  50. Chakraborty S, Chowdhury S, Saha PD (2012) Adsorption of crystal violet from aqueous solution onto sugarcane bagasse: central composite design for optimization of process variables. J Water Reuse Desalin 2(1):55–65. https://doi.org/10.2166/wrd.2012.008

    Article  CAS  Google Scholar 

  51. Duraipandian J, Rengasamy T, Vadivelu S (2017) Experimental and modeling studies for the removal of crystal violet dye from aqueous solutions using eco-friendly Gracilaria Corticata seaweed activated Carbon/Zn/Alginate polymeric composite beads. J Polym Environ 25(4):1062–1071. https://doi.org/10.1007/s10924-016-0879-z

    Article  CAS  Google Scholar 

  52. Margha FH, Radwan EK, Badawy MI, Gad-allah TA (2020) BiFeO3 glass-ceramic: controllable β-/γ-Bi2O3 transformation and application as magnetic solar-driven photocatalyst for water decontamination. ACS Omega 5(24):14625–14634

    Article  CAS  Google Scholar 

  53. El-Wakeel ST, Radwan EK, Abdel Ghafar HH, Moursy AS (2017) Humic acid-carbon hybrid material as Lead(II) ions adsorbent. Desalin Water Treat 74:216–223. https://doi.org/10.5004/dwt.2017.20584

    Article  CAS  Google Scholar 

  54. Vithalkar SH, Jugade RM (2020) Adsorptive removal of crystal violet from aqueous solution by cross-linked chitosan coated bentonite. Mater Today Proc 29:1025–1032. https://doi.org/10.1016/j.matpr.2020.04.705

    Article  CAS  Google Scholar 

  55. Chen K, Du L, Gao P, Zheng J, Liu Y, Lin H (2021) Super and selective adsorption of cationic dyes onto carboxylate-modified passion fruit peel biosorbent. Front Chem 9:1–13. https://doi.org/10.3389/fchem.2021.646492

    Article  CAS  Google Scholar 

  56. Mahmoudi MM, Nasseri S, Mahvi AH, Dargahi A, Khubestani MS, Salari M (2019) Fluoride removal from aqueous solution by acid-treated clinoptilolite: isotherm and kinetic study. Desalin Water Treat 146:333–340. https://doi.org/10.5004/dwt.2019.23625

    Article  CAS  Google Scholar 

  57. Weber, W. J.; Morris, J. C. Advances in Water Pollution Research. In Proceedings of the First International Conference on Water Pollution Research; Pergamon Press Oxford, 1962; Vol. 2, 231 pp.

  58. Morris, J. C.; Weber, W. J., JR Removal of biologically-resistant pollutants from waste waters by adsorption. In Advances in water pollution research, Elsevier, 1964; 231–266.

  59. Bendjeffal H, Mamine H, Djebli A, Rebbani N, Bouhedja Y (2017) Removal of 4-(2-Pyridylazo)-resorcinol from aqueous solution using natural and activated algerian Kaolin. Sens Lett 15(8):668–675. https://doi.org/10.1166/sl.2017.3844

    Article  Google Scholar 

  60. Sulyman M, Kucinska-Lipka J, Sienkiewicz M, Gierak A (2021) Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: isotherm, kinetics, and thermodynamic studies. Arab J Chem 14(5):103115. https://doi.org/10.1016/j.arabjc.2021.103115

    Article  CAS  Google Scholar 

  61. Rai P, Gautam RK, Banerjee S, Rawat V, Chattopadhyaya MC (2015) Synthesis and characterization of a Novel SnFe2O4@activated carbon magnetic nanocomposite and its effectiveness in the removal of crystal violet from aqueous solution. J Environ Chem Eng 3:2281–2291. https://doi.org/10.1016/j.jece.2015.08.017

    Article  CAS  Google Scholar 

  62. Wu YH, Xue K, Ma QL, Ma T, Ma YL, Sun YG, Ji WX (2020) Removal of hazardous crystal violet dye by low-cost P-Type Zeolite/Carbon composite obtained from in situ conversion of coal gasification fine slag. Microporous Mesoporous Mater 2021:312. https://doi.org/10.1016/j.micromeso.2020.110742

    Article  CAS  Google Scholar 

  63. Ching CG, Ooi PK, Ng SS, Hassan Z, Hassan H, Abdullah MJ (2014) Structural properties of zinc oxide thin films deposited on various substrates. Sains Malays 43(6):923–927

    CAS  Google Scholar 

  64. Wang RF, Deng LG, Li K, Fan XJ, Li W, Lu HQ (2020) Fabrication and characterization of sugarcane bagasse-calcium carbonate composite for the efficient removal of crystal violet dye from wastewater. Ceram Int 46(17):27484–27492. https://doi.org/10.1016/j.ceramint.2020.07.237

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bendjeffal.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaf, R., Bendjeffal, H., Djebli, A. et al. α-FeOOH@Luffa Composite Used as a Cost-Effective, Robust, and Eco-Friendly Adsorbent Material to Remove Methyl Violet 10B From Water. Chemistry Africa 5, 2031–2048 (2022). https://doi.org/10.1007/s42250-022-00455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00455-9

Keywords

Navigation