Skip to main content
Log in

Bioaccumulation of Elemental Concentrations in Sediment and Frog ( Pyxicephalus edulis) in Igbeebo River, Ondo State, Nigeria

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The present research was performed to determine the concentration of heavy metals in the male and female specimens of the identified frog species: pyxicephalus edulis collected from the Igbekebo River in Igbekebo, Ese-odo local government. Adult frogs (male and female) were collected from the river bank, and sediment samples were also collected at five (5) separate locations in the river. The frogs were dried separately at 105 °C for 6 h and then crushed into small particles (powder form). The sediment samples were air-dried for three days. Elemental components in frog samples, sediment samples and were analyzed using Proton Induced X-Ray Emission (PIXE).Some physiochemical parameters were also determined. The findings showed that the concentrations of Si, P, Cl, Ni, Zn and Cd were higher in Male frog while Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zr, Pb and Sn were higher in female frogs, the explanation for this variability is not known but may be due to variations in the genetic make-up of Male and Female frogs. The concentration of heavy metals in both male and female frogs was substantially higher relative to the available WHO limits. The mean concentration of elemental constituents in sediment was higher than the IAEA limit. The values of enrichment and the Igeo values were very high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pham NTH, Babcsányi I, Farsang A (2022) Ecological risk and enrichment of potentially toxic elements in the soil and eroded sediment in an organic vineyard (Tokaj Nagy Hill, Hungary). Environ Geochem Health 44:1893–1909

    Article  CAS  PubMed  Google Scholar 

  2. Ganiyu SA, Oyadeyi AT, Adeyemi AA (2021) Assessment of heavy metals contamination and associated risks in shallow groundwater sources from three different residential areas within Ibadan metropolis, southwest Nigeria. Appl Water Sci 11:81

    Article  CAS  Google Scholar 

  3. Perera RT, Dayananda N, Botheju S, Liyanag J, Ranasinghe A, Karunarathna RH, Kumara GP (2021) Heavy metal contamination in surface sediments of major tanks in Anuradhapura district; A CKDu endemic district in Sri Lanka. EQA Int J Environ Qual 41:40–48

    Google Scholar 

  4. Liu B, Dong D, Hua X et al (2021) Spatial distribution and ecological risk assessment of heavy metals in surface sediment of Songhua River, Northeast China. Chin Geogr Sci 31:223–233

    Article  Google Scholar 

  5. Krivokapic M (2021) Study on the evaluation of (heavy) metals in water and sediment of Skadar Lake (Montenegro), with BCF assessment and translocation ability (TA) by Trapa natans and a Review of SDGs. Water 13:876

    Article  CAS  Google Scholar 

  6. Liu B, Dong D, Hua X, Dong W, Li W (2021) Spatial Distribution and Ecological Risk Assessment of Heavy Metals in Surface Sediment of Songhua River, Northeast China. Chin Geogr Sci 31:223–233

    Article  Google Scholar 

  7. Perumal K, Antony J, Muthuramalingam S (2021) Heavy metal pollutants and their spatial distribution in surface sediments from Thondi coast, Palk Bay. South India Environ Sci Eur 33:63

    Article  CAS  Google Scholar 

  8. Asare EA, Assim Z, Fianko WR (2022) Eco-toxic risk assessment and source distribution of trace metals in surface sediments of the coastal and in four rivers estuary of Sarawak. Beni-Suef Univ J Basic Appl Sci 11:18

    Article  Google Scholar 

  9. Algül F, Beyhan M (2020) Concentrations and sources of heavy metals in shallow sediments in Lake Bafa Turkey. Sci Rep 10:11782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nkinda MS, Rwiza MJ, Ijumba JN, Njau KN (2021) Heavy metals risk assessment of water and sediments collected from selected river tributaries of the Mara River in Tanzania. Discov Water 1:3

    Article  Google Scholar 

  11. Zhao M, Zhang S, Han H, Pan D (2021) Heavy metals in sediments of Yellow Sea and East China Sea: Chemical speciation, distribution, influence factor, and contamination. J Ocean Limnol 39:1277–1292

    Article  CAS  Google Scholar 

  12. Ngulube Q, Parekh CT, Majoni S (2021) Heavy Metals in Blanket Dam and Downstream Weirs, and the Associated Risk to Human Health. Chem Afr 4:217–226

    Article  CAS  Google Scholar 

  13. Milacic MR, Zuliani T, Vidmar J, Primozˇ Oprcˇkal P, Scancar J (2017) Potentially toxic elements in water and sediments of the Sava River under extreme fow events. Sci Total Environ 605–606:894–905

    Article  PubMed  CAS  Google Scholar 

  14. Ediagbonya TF, Ayedun H (2018) Geochemistry of terrigenous sediments in surface water from ore and okitipupa southwest Nigeria Bangladesh. J Sci Ind Res 53(2):145–154

    CAS  Google Scholar 

  15. Ediagbonya TF, Balogun OT (2020) Potential risk assessment and spatial distribution of elemental concentrations in sediment. Appl Water Sci 10:176

    Article  CAS  Google Scholar 

  16. Ediagbonya TF, Ajayi S (2021) Risk assessment and elemental quantification of anthropogenic activities in soil. J Environ Geochem Health 43:4891–4904

    Article  CAS  Google Scholar 

  17. Rocha M, Santos MB, Zanella R, Prestes OD, Gonçalves AS, Schuch AP (2020) Preserved riparian forest protects endangered forest-specialists amphibian species against the genotoxic impact of sunlight and agrochemicals. Biol Conserv 249:108746

    Article  Google Scholar 

  18. Slaby S, Marin M, Marchand G, Lemiere S (2019) Exposures to chemical contaminants: what can we learn from reproduction and development endpoints in the amphibian toxicology literature. Environ Pollut 248:478–495

    Article  CAS  PubMed  Google Scholar 

  19. Guerra V, Jardim L, Llusia D, Márquez R, Bastos RP (2020) Knowledge status and trends in description of amphibian species in Brazil. Ecol Indic 118:106754

    Article  Google Scholar 

  20. Patar A, Giri A, Boro F, Bhuyan K, Singha U, Giri S (2016) Cadmium pollution and amphibians-studies in tadpoles of Rana limnocharis. Chemosphere 144:1043–1049

    Article  CAS  PubMed  Google Scholar 

  21. Mohammed A, Sookoo N, Hailey A (2017) Toxicity of six commercial pesticide formulations to larvae of two tropical frogs, Rhinella (Bufo) marina (Bufonidae) and Engystomops (Physalaemus) pustulosus (Leptodactylidae). J Aqua Pollu Toxicol 1:2–8

    Google Scholar 

  22. Guezgouz N, Parisi C, Boubsil S, Grieco G, Hana SA, Guerriero G (2021) Heavy metals assessment in the medjerda river basin (Northeastern Algeria): a preliminary water analysis and toad skin biopsy. Proc Zool Soc 74:104–113. https://doi.org/10.1007/s12595-020-00342-

    Article  CAS  Google Scholar 

  23. Chagas BRC, Utsunomiya HSM, Fernandes MN, Carvalh CS (2020) Metabolic responses in bullfrog, Lithobates catesbeianus after exposure to zinc, copper and cadmium. Comp Biochem Physiol C: Toxicol Pharmacol 233:108768

    CAS  Google Scholar 

  24. D’Errico G, Vitiello G, De Tommaso G, Abdel-Gawad FK, Brundo MV, Ferrante M, De Maio A, Trocchia S, Bianchi AR, Ciarcia G, Guerriero G (2018) Electron Spin Resonance (ESR) for the study of reactive oxygen species (ROS) on the isolated frog skin (Pelophylax bergeri): A non-invasive method for environmental monitoring. Environ Res 165:11–18

    Article  CAS  PubMed  Google Scholar 

  25. Gavrilović BR, Prokić MD, Petrović TG, Despotović SG, Radovanović TB, Krizmanić II, Ćirić MD, Gavrić JP (2020) Biochemical parameters in skin and muscle of Pelophylax kl esculentus frogs: Influence of a cyanobacterial bloom in situ. Aquatic Toxicol 220:105399

    Article  CAS  Google Scholar 

  26. Huang M, Men Q, Meng X, Fang X, Tao M (2017) Chronic toxic effect of lead on male testis tissue in adult Pelophylax nigromaculata. Nat Environ Pollut Technol 16:213

    CAS  Google Scholar 

  27. Lee HB, Ko SK (2017) The effects of Lead(II) nitrate on the embryo development in native amphibians. Korean J Environ Biol 35:706–714

    Article  Google Scholar 

  28. Prokić MD, Borković-Mitić SS, Krizmanić II, Mutić JJ, Trifković JD, Gavrić JP, Despotović SG, Gavrilović BR, Radovanović TB, Pavlović SZ, Saičić ZS (2016) Bioaccumulation and effects of metals on oxidative stress and neurotoxicity parameters in the frogs from the Pelophylax esculentus complex. Ecotoxicology 25:1531–1542

    Article  PubMed  CAS  Google Scholar 

  29. National Bureau of Agricultural Commodity and Food Standards.(2016). Food Consumption Data of Thailand. Ministry of Agriculture and Cooperatives, Bangkok, Thailand

  30. Neeratanaphan L, Khamma S, Benchawattananon R, Ruchuwararak P, Appamaraka S, Intamat S (2017) Heavy metal accumulation in rice (Oryza sativa) near electronic waste dumps and related human health risk assessment. Hum Ecol Risk Assess 23:1086–1098

    Article  CAS  Google Scholar 

  31. Mahmood T, Qadosi IQ, Fatima H, Akrim F, Rais M (2016) Metal concentrations in common skittering from (Euphlyctiscyanophlyctis) inhabiting Korang River, Islamabad. Pakistan Basic Appl Hepetol 30:25–38

    Google Scholar 

  32. Thanomsangad P, Tengjaroenkul B, Sriuttha M, Neeratanaphan L (2020) Heavy metal accumulation in frogs surrounding an e-waste dump site and human health risk assessment. Hum Ecol Risk Assess Int J 26(5):1313–1328

    Article  CAS  Google Scholar 

  33. Tlidjane A, Menaa M, Rebba AC, Telailia S, Seddik S, Chefrour A (2019) La richesse et la distribution des amphibiens dans la région de Souk Shras (nord-est de l’Algérie). Bull Soc Zool Fr 144:179–201

    Google Scholar 

  34. Pinelli C, Santillo A, ChieffiBaccari G, Falvo S, Di Fiore MM (2019) Effects of chemical pollutants on reproductive and developmental processes in Italian amphibians. Mol Reprod Dev 86:1324–1332

    Article  CAS  PubMed  Google Scholar 

  35. Singh P, Dey M, Ramanujam SN (2016) Bioaccumulation of heavy metals in anuran tadpoles: a study in Barak Valley, Assam. IJAB 4:171–178

    Google Scholar 

  36. Nkwunonwo UC, Odika PO, Onyi NI (2020) A review of the health implications of heavy metals in food chain in Nigeria. Sci World J 2020:11

    Article  CAS  Google Scholar 

  37. Belasen AM, Amses KR, Clemons RA, Becker CG, Toledo LF (2022) Habitat fragmentation in the Brazilian Atlantic Forest is associated with erosion of frog immunogenetic diversity and increased fungal infections. Immunogenetics. https://doi.org/10.1007/s00251-022-01252-x

    Article  PubMed  Google Scholar 

  38. Iglesias- Carrasco M, Carlos Cabido C (2022) Ord TJ (2022) Natural toxins leached from Eucalyptus globulus plantations affect the development and life-history of anuran tadpoles. Freshw Biol 67:378–388

    Article  CAS  Google Scholar 

  39. Nasir M, Ansari TM, Javed H, Yasin G, Khan AH, Shoaib M (2020) Analytical quantification of copper in frogs (Rana tigrina) found from various aquatic habitats. Afr J Biotechnol 19(2):121–128

    Article  Google Scholar 

  40. Rohani MF, Bristy AA, Hasan J, Hossain MK, Shahjahan M (2021) Dietary zinc in association with vitamin E promotes growth performance of Nile Tilapia. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-03001-9

    Article  PubMed  Google Scholar 

  41. Akter S, Jahan N, Rohani MF, Akter Y, Shahjahan M (2021) Chromium supplementation in diet enhances growth and feed utilization of striped catfish (Pangasianodon hypophthalmus). Biol Trace Elem Res 199(12):4811–4819. https://doi.org/10.1007/s12011-021-02608-2

    Article  CAS  PubMed  Google Scholar 

  42. Wang RF, Zhu LM, Zhang J, An XP, Yang YP, Song M, Zhang L (2020) Developmental toxicity of copper in marine medaka (Oryzias melastigma) embryos and larvae. Chemosphere 247:125923. https://doi.org/10.1016/j.chemosphere.2020.125923 (Epub 2020 Jan 14 PMID: 31972495)

    Article  CAS  PubMed  Google Scholar 

  43. Saffari S, Keyvanshokooh S, Zakeri M, Johari SA, Pasha-Zanoosi H, M.T.Mozanzadeh MT, (2018) Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio). Fish Physiol Biochem 44:1087–1097

    Article  CAS  PubMed  Google Scholar 

  44. Song ZX, Jiang WD, Liu Y, Wu P, Jiang J, Zhou XQ, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L (2017) Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 66:497–523

    Article  CAS  PubMed  Google Scholar 

  45. Dawood MAO, Zommara M, Eweedah NM, Helal AI (2020) The evaluation of growth performance, blood health, oxidative status and immune-related gene expression in Nile tilapia (Oreochromis niloticus) fed dietary nanoselenium spheres produced by lactic acid bacteria. Aquaculture 515:1–10. https://doi.org/10.1016/j.aquaculture.2019.734571

    Article  CAS  Google Scholar 

  46. Ghazi S, Diab AM, Khalafalla MM, Mohamed RA (2021) Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of nile tilapia (Oreochromis niloticus). Biol Trace Element Res 200(1):364–374

    Article  CAS  Google Scholar 

  47. Ediagbonya TF, Adesokan RB (2019) Elemental concentration in three different fish species captured from oluwa river, Okitipupa, Ondo State. Nigeria Pertanika. J Sci Technol 27(4):2201–2220

    Google Scholar 

  48. Ediagbonya TF, Osarumwense OP, Omoyugbo OE (2020) Comparative analysis of some metallic elements in selected body part of some fifishes (Mormyrus rume and Heterobranchus longififilis) captured from Igbokoda River, Okitipupa, Ondo State. Nigeria Result Chem 2:100071

    Article  CAS  Google Scholar 

  49. Gárriz Á, Del Fresno PS, Carriquiriborde P, Miranda LA (2019) Effects of heavy metals identified in Chascomús shallow lake on the endocrine-reproductive axis of pejerrey fish (Odontesthes bonariensis). Gen Comp Endocrinol 273(1):152–162

    Article  PubMed  CAS  Google Scholar 

  50. Zhelev ZhM, Arnaudova DN, Popgeorgiev GS, Tsonev SV (2020) In situ assessment of health status and heavy metal bioaccumulation of adult Pelophylax ridibundus (Anura: Ranidae) individuals inhabiting polluted area in southern Bulgaria. Ecol Ind 115(1–15):106413

    Article  CAS  Google Scholar 

  51. Zhelev Zh, Arnaudova D, Tsonev S (2022) Genotoxicity and erythrocyte nuclear abnormalities in Pelophylax ridibundus (Pallas, 1771) (Anura: Ranidae) in an industrial area in southern Bulgaria: Evaluation as biomarkers for ecological stress assessment. Acta Zool Bulgarica 74(1):59–67

    Google Scholar 

  52. Hu J, Liu J, Lv X, Yu L, Li J, Lan S, Yang Y (2021) In situ assessment of genetic and epigenetic alterations in frog Rana plancyi and Rana limnocharis inhabiting aquatic ecosystems associated with Pb/Zn/Cu mining. Sci Total Environ 779:146139. https://doi.org/10.1016/j.scitotenv.2021.146139

    Article  CAS  PubMed  Google Scholar 

  53. Şişman T, Keskin MÇ, Dane H, Adil Ş, Geyikoğlu F, Çolak S, Canpolat E (2021) Marsh Frog (Pelophylax ridibundus) as a Bioindicator to Assess Pollution in an Agricultural Area. Pak J Zool 53(1):337–349

    Google Scholar 

  54. Mani M, Altunışık A, Gedik K (2021) Bioaccumulation of trace elements and health risk predictions in edible tissues of the marsh frog. Biol Trace Element Res.

  55. Kuiwa TS, Mbah CE, Abolude DS, Lawal N, Aminu MA (2019) Determination of Heavy Metals in Hoplobatrachus occipitalis (Crowned Bullfrogs) and Water from Some Reservoirs in Kadawa Irrigation Project Kano. Nigeria Appl Sci Environ Manage 23(12):2131–2137

    CAS  Google Scholar 

  56. He F, Buoso MC, Burattini E, Fazinic S, Galassini S, Haque AMI, Jaksic M, Moschini G (1993) Target preparation for trace element determination of biological materials using nuclear techniques. Nucl Instrum Meth Phys Res Sect A 334:238

    Article  CAS  Google Scholar 

  57. Johansson SA, Campbell JL, Malmqvist KG (eds) (1995) Particle-induced X-ray emission spectrometry (PIXE), 1st edn. John Wiley and Sons, New York, p 133

    Google Scholar 

  58. Ademoroti CMO (1996) Standard methods for water and effluents analysis: Ibadan Foludex press limited pp 29–118

  59. Ediagbonya TF, Ogunjobi JA, Olutayo OO (2020) Effect of quarry activitieson selected biological resoures around quarry site within Onigambari forest plantation Oyo State, Nigeria. Environ Geochem Health 42(4):1–13

    Google Scholar 

  60. Subotic S, Jeftic ZV, Spasic S, Hegedis A, Krpo- Cetkovic J, Lenhardt M (2013) Distribution and accumulation of elements (As, Cu, Fe, Hg, Mn, and Zn) in tissues of fish species from different trophic levels in the Danube River at the conflfluence with the Sava River (Serbia). Environ Sci Pollut Res 20(8):5309–5317

    Article  CAS  Google Scholar 

  61. DeForest DK, Brix KV, Adams WJ (2007) Assessing element bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84(2):236–246

    Article  CAS  PubMed  Google Scholar 

  62. Liao CM, Ling MP (2003) Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from blackfoot disease area in Taiwan. Arch Environ Contam Toxicol 45(2):264–272

    Article  CAS  PubMed  Google Scholar 

  63. Javed M, Usmani N (2013) Assessment of heavy element (Cu, Ni, Fe Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelus armatus”. Springerplus 2(1):390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Avila PF, Ferreira da Silva E, Candeias C (2017) Health risk assessment through consumption of vegetables rich in heavy elements: the case study of the surrounding villages from Panasqueira mine, Central Portugal. Environ Geochem Health 39(3):565–589

    Article  CAS  PubMed  Google Scholar 

  65. FAO/WHO (2010) Codex Alimentarius Commission Procedural Manual (19th Ed.). Rome, Italy: World Health Organization and Food and Agriculture Organization of the United Nations.

  66. USEPA (2015) Regional ScreeningLevel (RSL) Summary Table. United States Environmental Protection Agency

    Google Scholar 

  67. Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi. India Trop Ecol 51(2):375–387

    CAS  Google Scholar 

  68. Oguntona T (1998) Green Leafy Vegetables. In: Osagie AU, Eka OU (eds) Nutritional Quality of Plant Foods. Department of Biochemistry, University of Benin, Benin City, Nigeria, Post Harvest Research Unit, pp 120–133

    Google Scholar 

  69. USEPA(2013):Reference dose (RfD): Description and use in health risk assessments,Background Document 1A, Integrated risk information system (IRIS); United States Environmental Protection Agency: Washington, DC, 15 March 2013; http://www.epa.gov/iris/rfd.htm.

  70. RAIS, 2017. Risk exposure models for chemicals user's guide. Risk Assess. Inf. Syst. URL. https://rais.ornl.gov/tools/rais_chemical_risk_guide.html, Accessed date: 1 January 2017

  71. Loska K, Cebula J, Pelczar J, Wiechula D, Kwapulinski J (1997) Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Bybnik water reservoir in Poland. Water Air Soil Pollut 93:347–365

    CAS  Google Scholar 

  72. Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geol J 2:109–118

    Google Scholar 

  73. Schiff KC, Weisberg SB (1999) Iron as a reference element for determining trace metal enrichment in southern California coastal shelf sediments. Mar Environ Res 48:161–176

    Article  CAS  Google Scholar 

  74. Ergin M, Saydam CÖ, Baştürk Ö, Erdem E, Yörük R (1991) Heavy metal concentration in surface sediments from 2 inlets (Golden HornEstuary and İzmit Bay) of the north eastern Sea of Marmara. Chem Geol 91:269–285

    Article  CAS  Google Scholar 

  75. Wedephol KH (1968) Origin and distribution of the elements. Pergimon Press, London, p 99

    Google Scholar 

  76. Alexakis D (2008) Geochemistry of stream sediments as a tool for assessing contamination by Arsenic, Chromium and other toxic elements: East Attica region. Greece Eur Water 21(22):57–72

    Google Scholar 

  77. Severtsova EA, Aguillón-Gutiérrez DR (2013) Postembryonic development of anurans in ponds littered with metal-containing refuse (simulation experiments). Biol Bull 40(9):738–747

    Article  Google Scholar 

  78. Severtsova EA, Nikiforova AI, Aguillón-Gutiérrez DR (2013) Spectrochemical and histochemical analyses of tissues of grass frog and gray toad tadpoles developing under simulation of pollution by plumbum and ferrum. Mosc Univ Biol Sci Bull 68(4):186–191

    Article  Google Scholar 

  79. Gastelum A, Aquino A, Aldama L (2019) Efecto del cloruro de cadmio durante el desarrollo larvario de la rana toro Lithobates catesbeianus (Shaw, 1802). Acta Univ 29:1–11

    Google Scholar 

  80. International Atomic Energy Agency (2000) Analytical quality control services, trace elements in soil. International Atomic Energy Agency, Vienna

    Google Scholar 

  81. Stolyar OB, Loumbourdis NS, Falfushinska HI, Romanchuk LD (2008) Comparison of metal bioavailability in frogs from urban and rural sites of Western Ukraine. Arch Environ Contam Toxicol 54:107–113

    Article  CAS  PubMed  Google Scholar 

  82. Duellman WE (1994) Biology of amphibians. JHU Press

    Google Scholar 

  83. Snodgrass JW, Hopkins WA, Roe JH (2003) Relationships among developmental stage, metamorphic timing, and concentrations of elements in bullfrogs (Rana catesbeiana). Environ Toxicol Chem 22(7):1597–1604

    Article  CAS  PubMed  Google Scholar 

  84. Berzins D, Bundy K (2002) Bioaccumulation of lead in Xenopus laevis tadpoles from water and sediment. Environ Int 28:69–77

    Article  CAS  PubMed  Google Scholar 

  85. Haywood LK, Alexander GJ, Byrne MJ, Cukrowska E (2004) Xenopus laevis embryos and tadpoles as models for testing for pollution by zinc, copper, lead and cadmium. Afr Zool 39:163–174

    Article  Google Scholar 

  86. Simon E, Braun M, Tóthmérész B (2010) Non-destructivemethod of frog (Rana esculenta L.) skeleton elemental analysis used during environmental assessment. Water Air Soil Pollut 209:467–471

    Article  CAS  Google Scholar 

  87. Kusrini MD, Alford RA (2006) Indonesia’s exports of frogs’ legs. Traffic Bulletin 21(1):13–24

    Google Scholar 

  88. Gonwouo LN, Rödel MO (2008) The importance of frogs for the livelihoods of the Bakossi people around Mount Manengouba, Cameroon, with Special Consideration of the Hairy Frog, Trichobatrachus robustus. Salamandra 44:23–34

    Google Scholar 

  89. Zocche JJ, Damiani AP, Hainzenreder G, Mendonc RA, Peres PB, dos Santosc CE, Debastiani R, Diasc JF, de Andrade VM (2013) Assessment of heavy metal content and DNA damage in Hypsiboas faber (anuran amphibian) in coal open-casting mine. Environ Toxicol Pharmacol 36:194–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Olusegun Agagu University of Science and Technology,Okitipupa Nigeria for providing the platform to carry out this study.

Funding

Partial funding by the institution

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thompson Faraday Ediagbonya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors observed all ethics during the research and sought for the necessary approval.

Consent to Publish

The authors give their consent to publish the manuscript

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ediagbonya, T.F., Ogunjobi, J.A., Odinaka, C.V. et al. Bioaccumulation of Elemental Concentrations in Sediment and Frog ( Pyxicephalus edulis) in Igbeebo River, Ondo State, Nigeria . Chemistry Africa 5, 1153–1165 (2022). https://doi.org/10.1007/s42250-022-00406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00406-4

Keywords

Navigation