Skip to main content
Log in

Analyzing Thermal Degradation of Furvina Drug Using a Stability Indicating Spectrophotometric Method and Characterization Studies

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Furvina is a potential compound for preclinical research, and therefore it is required to understand how environmental factors can affect its stability. In this work, the thermal stability and degradation kinetics of the furvina drug were investigated using a reliable spectrophotometric method. To reach this goal, three random furvina samples were submitted under conditions of thermal stress varying the temperature from 60 to 90 °C with a gradual increase of 10 °C as a function of time. The current method was validated over the concentration range of 1 to 30 μg mL−1, with limits of detection (LOD) and quantification (LOQ) of 0.14 and 0.47 μg mL−1, respectively. Fortifications made on heat-treated furvina samples achieved precisions less than 6.0% and accuracies in the range 97.8–102.5%, indicating the effectiveness of the proposed method for drug evaluation. Temperature showed a significant effect on furvina stability showing a tendency to gradually decrease its performance by increasing exposure time, which was confirmed by DSC, FT-IR, and SEM analysis. This compound was degraded around 10% when exposed to 90 °C for 6 h complying with the reasonable degradation limits established by Centro para el Control Estatal de Medicamentos, Equipos y Dispositivos Médicos (CECMED) and International Conference on Harmonisation (ICH) regulations. The degradation behavior of furvina followed first-order kinetics associated with a correlation coefficient of 0.9924. Our findings will enable to better understand the thermal stability of furvina, with the goal of proposing potential applications in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scholz T, Heyl CL, Bernardi D, Zimmermann S, Kattner L, Klein CD (2013) Chemical, biochemical and microbiological properties of a brominated nitrovinylfuran with broad-spectrum antibacterial activity. Bioorganic Med Chem 21:795–804

    Article  CAS  Google Scholar 

  2. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327

    Article  Google Scholar 

  3. Sekhon BS (2013) Repositioning drugs and biologics: retargeting old/ existing drugs for potential new therapeutic applications. J Pharm Educ Res 4:1–15

    Google Scholar 

  4. Parvathaneni V, Kulkarni NS, Muth A, Gupta V (2019) Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today 24:2076–2085

    Article  CAS  Google Scholar 

  5. Oliveira D, Borges A, Ruiz RM, Negrín ZR, Distinto S, Borges F, Simões M (2021) 2-(2-Methyl-2-Nitrovinyl)furan but not furvina interfere with staphylococcus aureus agr quorum-sensing system and potentiate the action of fusidic acid against biofilms. Int J Mol Sci 22:1–15

    Google Scholar 

  6. Allas U, Toom L, Selyutina A, Mäeorg U, Ricardo M, Merits A, Rinken A, Hauryliuk V, Kaldalu N, Tenson T (2016) Antibacterial activity of the nitrovinylfuran G1 (Furvina) and its conversion products. Sci Rep 6:36844

    Article  CAS  Google Scholar 

  7. Borges A, Sousa P, Gaspar A, Vilar S, Borges F, Simões M (2017) Furvina inhibits the 3-oxo-C12-HSL-based quorum sensing system of Pseudomonas aeruginosa and QS-dependent phenotypes. Biofouling 33:156–168

    Article  CAS  Google Scholar 

  8. Sifontes-Rodríguez S, Monzote-Fidalgo L, Castañedo-Cancio N, Montalvo-Álvarez AM, López-Hernández Y, Diogo NM, Infante-Bourzac JF, Pérez-Martín O, Meneses-Marcel A, Escario García-Trevijano JA, Cabrera-Pérez MÁ (2015) The efficacy of 2-nitrovinylfuran derivatives against Leishmania in vitro and in vivo. Mem Inst Oswaldo Cruz 110:166–173

    Article  Google Scholar 

  9. Fabbretti A, Brandi L, Petrelli D, Pon CL, Castañedo NR, Medina R, Gualerzi CO (2012) The antibiotic Furvina® targets the P-site of 30S ribosomal subunits and inhibits translation initiation displaying start codon bias. Nucleic Acids Res 40:10366–10374

    Article  CAS  Google Scholar 

  10. Martínez Rivero A, Ramírez-Mosqueda MA, Mosqueda Frómeta O, Escalona Morgado MM, Rivas Paneca M, Rodríguez Escriba RC, Daquinta Gradaille MA, Bello-Bello JJ (2020) Influence of Vitrofural® on sugarcane micropropagation using temporary immersion system. Plant Cell Tissue Organ Cult 141:447–453

    Article  Google Scholar 

  11. Urquijo AG, Hospital, (2017) Dermofural ointment (0.15 %) as an antibacterial of local use in a burned patient. Medicentro Electrónica 21:253–256

    Google Scholar 

  12. Ferrer LSG, Pérez AMS (2013) Diseño y validación de un método espectrofotométrico para el control de la calidad del furvinol. Rev Cuba Farm 47:446–454

    Google Scholar 

  13. Perez Z, Orlando R, Zenaida A, Negrin R, Maria A, Luis H, Negrín V, Pérez M (2021) Comprehensive Certification of the Furvina Production by Modeling Quality Control Parameters. J Pharm Innov 1–7.

  14. Perez-Rodriguez Z, Rodríguez-Rodríguez Y, Molina-Ruiz R, Rodriguez-Negrin Z, Medina-Marrero R, Ancede-Gallardo E (2019) Development of a New Formulation for Onychomycosis Treatment Using Furvina® as an Active Pharmaceutical Ingredient. In International Conference on BioGeoSciences. Springer, Cham 191–203.

  15. Perez-Rodriguez Z, Negrin ZR, Alvarez O, Marrero RM, Rodríguez-Rodríguez Y (2021) Development of a medicated nail lacquer for onychomycosis treatment. Afinidad 78:593

    Google Scholar 

  16. Blessy M, Patel RD, Prajapati PN, Agrawal YK (2014) Development of forced degradation and stability indicating studies of drugs - A review. J Pharm Anal 4:159–165

    Article  CAS  Google Scholar 

  17. ICH - International Conference On Harmonisation (2003) ICH Q1A (R2), Stability testing of new drug substances and products.

  18. CECMED - Centro para el Control Estatal de Medicamentos, Equipos y Dispositivos Médicos (2000) Requerimientos de los Estudios de Estabilidad para el Registro de Productos Farmacéuticos Nuevos y Conocidos. 320 Regulación No. 23 – 2000, Ciudad de la Habana, Cuba.

  19. Mason RL, Gunst RF, Hess JL (2003) Statistical design and analysis of experiments: with applications to engineering and science. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  20. Akash MSH, Rehman K (2020) Introduction to spectrophotometric techniques. Essentials of pharmaceutical analysis. Springer, Singapore, pp 19–27

    Chapter  Google Scholar 

  21. Rodríguez MP, Ferreira Da Silva B, Pezza HR, Pezza L (2016) A greener flow injection method based on a LWCC for the screening of tetracycline antibiotics in bovine milk samples. Anal Methods 8:5262–5271

    Article  Google Scholar 

  22. Currie L, Horwitz W (1994) IUPAC recommendations for defining and measuring detection and quantification limits. Analusis 22:M24-26

    CAS  Google Scholar 

  23. FDA - Food and Drug Administration (2018) Guidance for Industry, Bioanalytical Method Validation.

Download references

Acknowledgements

The authors are truly grateful to Centro de Bioactivos Químicos (CBQ) for financial support. Also, they would like to thank Centro de Estudios Avanzados de Cuba (CEAC) for the spectroscopy (FT-IR), microscopy (SEM) and calorimetric (DSC) analysis.

Author information

Authors and Affiliations

Authors

Contributions

HLV: Investigation, Methodology, Formal analysis, Validation. OA and ZP: Investigation, Writing—review & editing. ZR: Resources, Funding acquisition. MP: Conceptualization, Visualization, Data curation, Writing—original draft, Writing—review & editing, Supervision.

Corresponding author

Correspondence to Michael Pérez-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdés-Negrín, H.L., Alvarez, O., Perez-Rodriguez, Z. et al. Analyzing Thermal Degradation of Furvina Drug Using a Stability Indicating Spectrophotometric Method and Characterization Studies. Chemistry Africa 5, 305–312 (2022). https://doi.org/10.1007/s42250-021-00307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00307-y

Keywords

Navigation