Skip to main content

Advertisement

Log in

Diffraction Crystallite Size Effects on Mechanical Properties of Nanocrystalline (Ti0.8W0.2)C

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The aim of this work is the study of the mechanical properties of nanostructured (Ti0.8 W0.2)C carbide synthesized by mechanical alloying process. The structural characterization was studied using X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Microstrain and grain size of the milled (Ti0.8W0.2)C powders were computed using Rietveld refinement method. Mechanical properties including microhardness (HV) and flow stress (σf) of the (Ti0.8W0.2)C powders were calculated. It has been found that morphology and particle size varied with milling time. When the milling time increases up to 20 h, we note a homogeneous and uniform dispersion of fine particles smaller than 1 μm in size. During the milling process, the formation of the substitutional solid solution (Ti0.8W0.2)C is favoured by the diffusion of W in the Ti crystalline sites of the Ti-C matrix. Thus, the lattice parameter decreases to reach the value of 4.2936 Ǻ after 20 h of MA duration due to the continual substitution of Ti by W. With a reduction of diffraction crystallite size (DCS), the (Ti0.8W0.2)C alloys were found to be noticeably hardened. The (DCS) dependence of (HV) was not following the simple Hall–Petch relationship over (DCS) whole range, showing distinct three stages matching three different Hall–Petch slopes. The slope of the H-P relationship becomes negative (k3 = − 16.157 GPa nm1/2) in the (DCS) range of 13–7 nm. Considering the calculated results, the optimum milling time which corresponds to the highest value of hardness (20.01 GPa) and flow stress (6.67 GPa), was determined as 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guo X, Zheng Y, Zhang G, Wu H, Yang Z, Gong A (2020) Int J Refract Met Hard Mater 93:105342

    Article  CAS  Google Scholar 

  2. McColm IJ, Clark NJ (1986) High performance ceramics. Blackie Press, London

    Google Scholar 

  3. Yang CJ (2020) Mater Res Express 7:016508

    Article  CAS  Google Scholar 

  4. Jin YZ, Liu Y, Wang YK, Ye JW (2009) Mater Chem Phys 118:191–196

    Article  CAS  Google Scholar 

  5. Shikama T, Sakai Y, Fukutomi M, Okada M (1985) J Nucl Mater 134:765–768

    Article  Google Scholar 

  6. Knotek O, Barimani A (1989) Thin Solid Films 174(Part 1):51–56

    Article  CAS  Google Scholar 

  7. Jansson U, Lewin E (2013) Thin Solid Films 536:1–24

    Article  CAS  Google Scholar 

  8. Kim J, Kang S (2011) Mater Sci Eng A 528:3090–3095

    Article  Google Scholar 

  9. Jung J, Kang S (2007) Scr Mater 56:561–564

    Article  CAS  Google Scholar 

  10. Wang QX, Wang XH, Yang Y, Fan ZK (2009) Int J Refract Met Hard Mater 27:847–851

    Article  CAS  Google Scholar 

  11. Ghosh B, Pradhan SK (2010) Mater Chem Phys 120:537–545

    Article  CAS  Google Scholar 

  12. Abdellaoui M, Gaffet E (1994) J Alloys Compd 209:351–361

    Article  CAS  Google Scholar 

  13. Abdellaoui M, Gaffet E (1995) Acta Metall Mater 433:1087–1098

    Article  Google Scholar 

  14. Karouia A, Slama C, Jaafar H, Schoenstein F, Abdellaoui M, Jouini N (2019) Int J Refract Met Hard Mater 83:104968

    Article  CAS  Google Scholar 

  15. Dutta H, Sen A, Pradhan SK (2010) J Alloys Compd 501:198–203

    Article  CAS  Google Scholar 

  16. Teber A, Schoenstein F, Têtard F, Abdellaoui M, Jouini N (2012) Int J Refract Met Hard Mater 30:64–70

    Article  CAS  Google Scholar 

  17. Suryanarayana C (2001) Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  18. Vaidya M, Muralikrishna GM, Murty BS (2019) J Mater Res 34:664–686

    Article  CAS  Google Scholar 

  19. Canakci A, Ozsahin S, Varol T (2012) Powder Technol 228:26–35

    Article  CAS  Google Scholar 

  20. Razzaghi M, Kasiri-Asgarani M, Bakhsheshi-Rad HR, Ghayour H (2020) Compos Part B Eng 190:107947

    Article  CAS  Google Scholar 

  21. Salur E, Acarer M, Savkliyildiz I (2021) Mater Today Commun 27:102202

    Article  CAS  Google Scholar 

  22. Hall EO (1951) Proc Phys Soc B 64:747–753

    Article  Google Scholar 

  23. Petch NJ (1953) J Iron Steel Inst 174:25–28

    CAS  Google Scholar 

  24. Pande C, Cooper K (2009) Prog Mater Sci 54:689

    Article  CAS  Google Scholar 

  25. Koch C, Ovid’ko I, Seal S, Veprek S (2007) Structural nanocrystalline materials, fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Nieh T, Wadsworth J (1991) Scr Metall Mater 25:955

    Article  CAS  Google Scholar 

  27. Eckert J, Holzer J, Krill C, Johnson W (1992) J Mater Res 7:1751

    Article  CAS  Google Scholar 

  28. Meyers M, Mishra A, Benson D (2006) Prog Mater Sci 51:427

    Article  CAS  Google Scholar 

  29. Van Swygenhoven H, Budrovich Z, Derlet P, Hasnaoui A (2003) Processing and properties of structural nanomaterials. In: Shaw L, Suryanarayana C, Mishra R (eds). pp 3–10

  30. Li X, Hu W, Xiao S, Huang W-Q (2008) Phys E 40:3030

    Article  CAS  Google Scholar 

  31. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103–189

    Article  CAS  Google Scholar 

  32. Semenova I, Salimgareeva G, Da Costa G (2010) Spec Issue Bulk Nanostructured Mater 12(8):803–807

    CAS  Google Scholar 

  33. Valiev RZ, Alexandrov IV, Enikeev NA, Yu Murashkin M, Semenova IP (2010) Rev Adv Mater Sci 25:1–10

    CAS  Google Scholar 

  34. Rodriguez-Caravajal J (1993) J Phys B 192:55–69

    Article  Google Scholar 

  35. Rietveld HM (1969) J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  36. Bandyopadhyay S, Dutta H, Pradhan SK (2013) J Alloys Compd 581:710–716

    Article  CAS  Google Scholar 

  37. Li J, Soh AK (2012) Int J Plast 39:88–102

    Article  CAS  Google Scholar 

  38. Taylor GI (1934) The mechanism of plastic deformation of crystals. Part I. Theor Proc R Soc Lond A 145:362–387

    Article  CAS  Google Scholar 

  39. Hull D, Bacon DJ (2011) Introduction to dislocations, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  40. Williams WS, Shaal RDJ (1962) Appl Phys 33:955–962

    Article  CAS  Google Scholar 

  41. Rowcliffe DJ, Hollox GE (1971) Mater Sci 6:1270–1276

    Article  CAS  Google Scholar 

  42. Hannink RHJ, Kohlstedt DL, Murray MJ (1972) Proc R Soc Lond A 326:409–420

    Article  CAS  Google Scholar 

  43. Bukatov VG (1979) Ph. D. Thesis, Moscow’s Institute of steel and alloys, Moscow, p 150 (in Russian)

  44. Borisov SV, Mitrofanov BV, Shveikin GP (1979) Izv AN SSSR Neorg Mater 15:2142–2145 (in Russian)

    CAS  Google Scholar 

  45. Baker SP, Vinci RP, Arias T (2002) Mater Res Soc Bull 27:26–29

    Article  Google Scholar 

  46. Conrad H, Narayan J (2002) Appl Phys Lett 81:2241–2243

    Article  CAS  Google Scholar 

  47. Wang B, Liu Y, Liu Y, Ye JW (2012) Phys B 407:2542–2548

    Article  CAS  Google Scholar 

  48. Fecht HJ, Hellestern E, Fu Z, Johnson WL (1990) Metall Trans A 21:2333–2337

    Article  Google Scholar 

  49. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng A 381:71–79

    Article  Google Scholar 

  50. Borodin EN, Mayer AE (2012) Mater Sci Eng A 532:245–248

    Article  CAS  Google Scholar 

  51. Selyutina N, Borodin EN, Petrov Y, Mayer AE (2016) Int J Plast 82:97–111

    Article  CAS  Google Scholar 

  52. Benkassem S, Capolungo L, CherkaouiSâd M (2007) Acta Mater 55:3563–3572

    Article  CAS  Google Scholar 

  53. Schuh CA, Nieh TG, Yamakasi T (2002) Scr Mater 46:735–740

    Article  CAS  Google Scholar 

  54. Averback RS, Höfler HJ, Tao R (1993) Mater Sci Eng A 166:169

    Article  Google Scholar 

  55. Zhang P, Li SX, Zhang ZF (2011) Mater Sci Eng A 529:62–73

    Article  CAS  Google Scholar 

  56. Kocks UF (1966) Philos Mag 13:541–566

    Article  Google Scholar 

  57. Carlton CE, Ferreira PJ (2007) Acta Mater 55:3749–3756

    Article  CAS  Google Scholar 

  58. Gao FM (2006) Phys Rev B 73:132104

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohieddine Abdellaoui.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slama, C., Jaafar, H., Karouia, A. et al. Diffraction Crystallite Size Effects on Mechanical Properties of Nanocrystalline (Ti0.8W0.2)C. Chemistry Africa 4, 809–819 (2021). https://doi.org/10.1007/s42250-021-00264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00264-6

Keywords

Navigation