Skip to main content
Log in

PEGylation of silver nanoparticles via Berginia Ciliata aqueous extract for biological applications

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Herein, we have used a non-hazardous and environment-friendly green approach for the PEGylation of silver nanoparticles (PEGylated AgNPs) using an aqueous extract of Berginia Ciliata. The PEGylated AgNPs are also compared with non-PEGylated pristine silver nanoparticles (p-AgNPs) for physicochemical, morphological, and biological properties using multiple characterization techniques and biological assays. The detailed characterization investigation not only confirms the successful capping of PEG but also reveals that PEG highly influences the morphology, yield, and dispersibility of the AgNPs. Such physicochemically altered properties may have also resulted in different biological properties as the PEGylated AgNPs result in higher antioxidant and antileishmanial properties as compared to pristine AgNPs. However, comparatively lower antibacterial and enzyme inhibition potentials are observed for PEGylated AgNPs. Furthermore, in vitro blood compatibility studies reveal the bio-safe nature of both the PEGylated and pristine AgNPs at the tested concentrations. Our study thus concludes that the green synthesis approach could be successfully utilized for PEGylation of metallic NPs of pharmacological importance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Ihsan, M. Farooq, M.A. Khan et al., Synthesis, characterization, and biological screening of metal nanoparticles loaded gum acacia microgels. Microsc. Res. Tech. 84, 1673–1684 (2021). https://doi.org/10.1002/jemt.23726

    Article  CAS  PubMed  Google Scholar 

  2. A.K. Keshari, R. Srivastava, P. Singh et al., Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med. 11, 37–44 (2020). https://doi.org/10.1016/j.jaim.2017.11.003

    Article  PubMed  Google Scholar 

  3. E. Haggag, A. Elshamy, M. Rabeh et al., Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus</em> and <em>Malephora lutea</em></p>. Int. J. Nanomedicine 14, 6217–6229 (2019). https://doi.org/10.2147/IJN.S214171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Andra, S.K. Balu, J. Jeevanandam, M. Muthalagu, Emerging nanomaterials for antibacterial textile fabrication. Naunyn Schmiedebergs Arch. Pharmacol. 394, 1355–1382 (2021). https://doi.org/10.1007/s00210-021-02064-8/Published

    Article  CAS  PubMed  Google Scholar 

  5. Q.U.A. Fatima, N. Ahmed, B. Siddiqui et al., Enhanced antimicrobial activity of silver sulfadiazine cosmetotherapeutic nanolotion for burn infections. Cosmetics 9, 93 (2022). https://doi.org/10.3390/cosmetics9050093

    Article  CAS  Google Scholar 

  6. M.I. Khan, A. Mazumdar, S. Pathak et al., Biogenic Ag/CaO nanocomposites kill Staphylococcus aureus with reduced toxicity towards mammalian cells. Colloids Surf. B Biointerfaces 189, 110846 (2020). https://doi.org/10.1016/j.colsurfb.2020.110846

    Article  CAS  PubMed  Google Scholar 

  7. R. Akram, M.D. Khan, C. Zequine et al., Cobalt sulfide nanoparticles: Synthesis, water splitting and supercapacitance studies. Mater. Sci. Semicond. Process. 109, 104925 (2020). https://doi.org/10.1016/J.MSSP.2020.104925

    Article  CAS  Google Scholar 

  8. V. Bastos, J.M.P. Ferreira de Oliveira, D. Brown et al., The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. Toxicol. Lett. 249, 29–41 (2016). https://doi.org/10.1016/j.toxlet.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  9. S. Jegatheeswaran, M. Sundrarajan, PEGylation of novel hydroxyapatite/PEG/Ag nanocomposite particles to improve its antibacterial efficacy. Mater. Sci. Eng. C 51, 174–181 (2015). https://doi.org/10.1016/j.msec.2015.02.012

    Article  CAS  Google Scholar 

  10. A. Nicosia, A. Abbadessa, F. Vento et al., Silver nanoparticles decorated with PEGylated porphyrins as potential theranostic and sensing agents. Materials (Basel) 14, 2764 (2021). https://doi.org/10.3390/ma14112764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P.S. Sadalage, R.V. Patil, D.V. Havaldar et al., Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J Nanobiotechnology 19, 84 (2021). https://doi.org/10.1186/s12951-021-00836-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Mosaddik, V. Ravinayagam, S. Elaanthikkal et al., Development and Use of Polymeric Nanoparticles for the Encapsulation and Administration of Plant Extracts, in Natural Products as Source of Molecules with Therapeutic Potential. (Springer International Publishing, Cham, 2018), pp.391–463

    Chapter  Google Scholar 

  13. P.P. Tumkur, N.K. Gunasekaran, B.R. Lamani et al., Cerium oxide nanoparticles: synthesis and characterization for biosafe applications. Nanomanufacturing 1, 176–189 (2021). https://doi.org/10.3390/nanomanufacturing1030013

    Article  Google Scholar 

  14. B. Armendáriz-Barragán, N. Zafar, W. Badri et al., Plant extracts: from encapsulation to application. Expert Opin. Drug Deliv. 13, 1165–1175 (2016). https://doi.org/10.1080/17425247.2016.1182487

    Article  CAS  PubMed  Google Scholar 

  15. S. Jevševar, M. Kunstelj, V.G. Porekar, PEGylation of therapeutic proteins. Biotechnol. J. 5, 113–128 (2010). https://doi.org/10.1002/biot.200900218

    Article  CAS  PubMed  Google Scholar 

  16. F.M. Veronese, G. Pasut, PEGylation, successful approach to drug delivery. Drug Discov. Today 10, 1451–1458 (2005). https://doi.org/10.1016/S1359-6446(05)03575-0

    Article  CAS  PubMed  Google Scholar 

  17. I. Yadav, S.D. Purohit, H. Singh et al., A highly transparent tri-polymer complex in situ hydrogel of HA, collagen and four-arm-PEG as potential vitreous substitute. Biomed. Mater. 16, 065018 (2021). https://doi.org/10.1088/1748-605X/ac2714

    Article  CAS  Google Scholar 

  18. Z. Hussain, S. Khan, M. Imran et al., PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv. Transl. Res. 9, 721–734 (2019). https://doi.org/10.1007/s13346-019-00631-4

    Article  CAS  PubMed  Google Scholar 

  19. A.S. Karakoti, S. Das, S. Thevuthasan, S. Seal, PEGylated inorganic nanoparticles. Angew Chemie Int Ed 50, 1980–1994 (2011). https://doi.org/10.1002/anie.201002969

    Article  CAS  Google Scholar 

  20. S. Naz, S.T.B. Kazmi, M. Zia, CeO 2 nanoparticles synthesized through green chemistry are biocompatible: In vitro and in vivo assessment. J. Biochem. Mol. Toxicol. 33, (2019). https://doi.org/10.1002/jbt.22291

  21. S. Hasan, A review on nanoparticles: their synthesis and types. Res. J. Recent. Sci. 2277, 2502 (2015)

    Google Scholar 

  22. S.A. Gaddam, V.S. Kotakadi, G.K. Subramanyam et al., Multifaceted phytogenic silver nanoparticles by an insectivorous plant Drosera spatulata Labill var. bakoensis and its potential therapeutic applications. Sci. Rep. 11, 21969 (2021). https://doi.org/10.1038/s41598-021-01281-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S.K. Srikar, D.D. Giri, D.B. Pal et al., Green synthesis of silver nanoparticles: a review. Green Sustain. Chem. 06, 34–56 (2016). https://doi.org/10.4236/gsc.2016.61004

    Article  CAS  Google Scholar 

  24. K.O. Iwuozor, L.A. Ogunfowora, I.P. Oyekunle, Review on sugarcane-mediated nanoparticle synthesis: a green approach. Sugar Tech 24, 1186–1197 (2022). https://doi.org/10.1007/s12355-021-01038-7

    Article  CAS  Google Scholar 

  25. K. Kraśniewska, S. Galus, M. Gniewosz, Biopolymers-based materials containing silver nanoparticles as active packaging for food applications–a review. Int. J. Mol. Sci. 21, 698 (2020). https://doi.org/10.3390/ijms21030698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A.H. Korayem, N. Tourani, M. Zakertabrizi et al., A review of dispersion of nanoparticles in cementitious matrices: nanoparticle geometry perspective. Constr. Build. Mater. 153, 346–357 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.164

    Article  CAS  Google Scholar 

  27. Z. Haris, I. Ahmad, Green synthesis of silver nanoparticles using Moringa oleifera and its efficacy against gram-negative bacteria targeting quorum sensing and biofilms. J. Umm Al-Qura Univ. Appl. Sci. 10, 156–167 (2024). https://doi.org/10.1007/s43994-023-00089-8

    Article  Google Scholar 

  28. S. Faisal, M.A. Khan, H. Jan et al., Edible mushroom (Flammulina velutipes) as biosource for silver nanoparticles: from synthesis to diverse biomedical and environmental applications. Nanotechnology 32, 065101 (2021). https://doi.org/10.1088/1361-6528/abc2eb

    Article  CAS  PubMed  Google Scholar 

  29. S. Baliyan, R. Mukherjee, A. Priyadarshini et al., Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 27, 1326 (2022). https://doi.org/10.3390/molecules27041326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. T.R. Kyriakides, A. Raj, T.H. Tseng et al., Biocompatibility of nanomaterials and their immunological properties. Biomed. Mater. 16, 042005 (2021). https://doi.org/10.1088/1748-605X/abe5fa

    Article  CAS  Google Scholar 

  31. D. Jagadeesh, K. Prashantha, R. Shabadi, Star-shaped sucrose-capped CaO nanoparticles from Azadirachta indica : a novel green synthesis. Inorg. Nano-Metal Chem. 47, 708–712 (2017). https://doi.org/10.1080/15533174.2016.1212231

    Article  CAS  Google Scholar 

  32. S. Hemmati, A. Rashtiani, M.M. Zangeneh et al., Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158, 8–14 (2019). https://doi.org/10.1016/j.poly.2018.10.049

    Article  CAS  Google Scholar 

  33. M.U. Zahid, M.A. Khan, U. Ahmad et al., A Comparative Study of PEGylated Cobalt Oxide Nanoparticles (Co3O4-NPs) and Cobalt Sulfide Nanoparticles (Co9S8-NPs) for Biological and Photocatalytic Applications. Bionanoscience (2024). https://doi.org/10.1007/s12668-024-01322-2

    Article  Google Scholar 

  34. M.A. Khan, M.A.R. Siddique, M. Sajid et al., A Comparative Study of Green and Chemical Cerium Oxide Nanoparticles (CeO2-NPs): From Synthesis, Characterization, and Electrochemical Analysis to Multifaceted Biomedical Applications. Bionanoscience 13, 667–685 (2023). https://doi.org/10.1007/s12668-023-01114-0

    Article  Google Scholar 

  35. A.U. Khan, H.U. Khan, M.S.O. Alhar et al., Antimicrobial, antioxidant, and antileishmanial activity of Tavernier glabra mediated ZnO NPs and Fe2O3 NPs. Inorg. Chem. Commun. 148, 110297 (2023). https://doi.org/10.1016/j.inoche.2022.110297

    Article  CAS  Google Scholar 

  36. H. Aziz, A. Saeed, F. Jabeen et al., Design, synthesis, in vitro anti-oxidant evaluation, α-amylase inhibition assay, and molecular docking analysis of 2-(2-benzylidenehydrazinyl)-4,4-diphenyl-1H-imidazol-5(4H)-ones. J. Mol. Struct. 1278, 134924 (2023). https://doi.org/10.1016/j.molstruc.2023.134924

    Article  CAS  Google Scholar 

  37. S. Das, J.M. Dowding, K.E. Klump et al., Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 8, 1483–1508 (2013). https://doi.org/10.2217/nnm.13.133

    Article  CAS  PubMed  Google Scholar 

  38. S. Jan, M.R. Khan, U. Rashid, J. Bokhari, Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of Monotheca buxifolia fruit. Osong Pub. Health Res. Perspect. 4, 246–254 (2013). https://doi.org/10.1016/j.phrp.2013.09.003

    Article  Google Scholar 

  39. H. Ullah, J. Ihsan, R.M.K. Mohamed et al., Bionanocomposite scaffolds based on MnS-nanorods loaded acacia-Senegal-gum hydrogels: fabrication, characterization and biological evaluation. Bioact. Carbohydrates Diet. Fibre 30, 100368 (2023). https://doi.org/10.1016/j.bcdf.2023.100368

    Article  CAS  Google Scholar 

  40. M. Farooq, J. Ihsan, R.M.K. Mohamed et al., Highly biocompatible formulations based on Arabic gum Nano composite hydrogels: Fabrication, characterization, and biological investigation. Int. J. Biol. Macromol. 209, 59–69 (2022). https://doi.org/10.1016/j.ijbiomac.2022.03.162

    Article  CAS  PubMed  Google Scholar 

  41. R. Balasubramanian, B. Kim, S.L. Tripp et al., Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles. Langmuir 18, 3676–3681 (2002). https://doi.org/10.1021/la0156107

    Article  CAS  Google Scholar 

  42. B.I. Kharisov, H.V.R. Dias, O.V. Kharissova et al., Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Adv. 4, 45354–45381 (2014). https://doi.org/10.1039/C4RA06902A

    Article  CAS  Google Scholar 

  43. V. Kumar, S. Singh, B. Srivastava et al., Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J. Environ. Chem. Eng. 7, 103094 (2019). https://doi.org/10.1016/j.jece.2019.103094

    Article  CAS  Google Scholar 

  44. R.Y. Ghareeb, H. Alfy, A.A. Fahmy et al., Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica. Sci. Rep. 10, 19968 (2020). https://doi.org/10.1038/s41598-020-77005-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S.O. Aisida, K. Ugwu, P.A. Akpa et al., Biosynthesis of silver nanoparticles using bitter leave (Veronica amygdalina) for antibacterial activities. Surf. Interfaces 17, 100359 (2019). https://doi.org/10.1016/j.surfin.2019.100359

    Article  CAS  Google Scholar 

  46. J. Laloy, V. Minet, L. Alpan et al., Impact of silver nanoparticles on haemolysis, platelet function and coagulation. Nanobiomedicine 1, 4 (2014). https://doi.org/10.5772/59346

    Article  PubMed  PubMed Central  Google Scholar 

  47. F. Niknejad, M. Nabili, R. DaieGhazvini, M. Moazeni, Green synthesis of silver nanoparticles: another honor for the yeast model Saccharomyces cerevisiae. Curr. Med. Mycol. 1, 17–24 (2015). https://doi.org/10.18869/acadpub.cmm.1.3.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. W.R. Rolim, J.C. Pieretti, D.L.S. Renó et al., Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications. ACS Appl. Mater. Interfaces 11, 6589–6604 (2019). https://doi.org/10.1021/acsami.8b19021

    Article  CAS  PubMed  Google Scholar 

  49. Y. Sakata, S. Shiraishi, M. Otsuka, A novel white film for pharmaceutical coating formed by interaction of calcium lactate pentahydrate with hydroxypropyl methylcellulose. Int. J. Pharm. 317, 120–126 (2006). https://doi.org/10.1016/j.ijpharm.2006.02.058

    Article  CAS  PubMed  Google Scholar 

  50. M. Hafeez, R. Shaheen, B. Akram et al., Green synthesis of cobalt oxide nanoparticles for potential biological applications. Mater. Res. Express 7, 025019 (2020). https://doi.org/10.1088/2053-1591/ab70dd

    Article  CAS  Google Scholar 

  51. M.D. Mauricio, S. Guerra-Ojeda, P. Marchio et al., Nanoparticles in medicine: a focus on vascular oxidative stress. Oxid. Med. Cell. Longev. 2018, 1–20 (2018). https://doi.org/10.1155/2018/6231482

    Article  CAS  Google Scholar 

  52. C. Vanlalveni, S. Lallianrawna, A. Biswas et al., Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 11, 2804–2837 (2021). https://doi.org/10.1039/D0RA09941D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Ahmad, S. Ullah, F. Syed et al., Biogenic metal nanoparticles as a potential class of antileishmanial agents: mechanisms and molecular targets. Nanomedicine 15, 809–828 (2020). https://doi.org/10.2217/nnm-2019-0413

    Article  CAS  PubMed  Google Scholar 

  54. M. Azim, S.A. Khan, S. Ullah et al., Therapeutic advances in the topical treatment of cutaneous leishmaniasis: a review. PLoS Negl. Trop. Dis. 15, e0009099 (2021). https://doi.org/10.1371/journal.pntd.0009099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. J.R. Fanti, F. Tomiotto-Pellissier, M.M. Miranda-Sapla et al., Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop. 178, 46–54 (2018). https://doi.org/10.1016/j.actatropica.2017.10.027

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research project did not receive external funding.

Author information

Authors and Affiliations

Authors

Contributions

B.Q carried out the experimental work, analysed the data, and wrote the manuscript. M.A.K. perceived the idea, wrote and reviewed the manuscript. H.T, M.U.Z, H.A.A, S.J.H and U.A., assisted in the experimental work, resources, data and characterization analysis. S.A.I.B supervised the project. The authors B.Q and M.A.K contributed equally to this work.

Corresponding authors

Correspondence to Muhammad Aslam Khan or Syed Ali Imran Bokhari.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadeer, B., Khan, M.A., Tariq, H. et al. PEGylation of silver nanoparticles via Berginia Ciliata aqueous extract for biological applications. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00727-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00727-9

Keywords

Navigation