Skip to main content
Log in

Determination of quantum size effect of colloidal SiC quantum dots by cyclic voltammetry

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Colloidal SiC quantum dots (QDs) is a promising material for wavelength downconversion in optoelectronics and photovoltaics due to their outstanding properties, including high chemical resistance, high photoluminescence, and tunable size-dependent bandgap. TEM analysis revealed that the average particle diameter of the colloidal SiC QDs was 2.02 nm, 1.75 nm, 1.18 nm, and 1.15 nm for samples etched for 30 min, 1 h, 1 h 30 min, and 2 h, respectively. HRTEM analysis showed that the lattice spacing was 0.29 nm, corresponding to the (111) plane of bulk cubic 3C-SiC. The optical bandgap of the unetched sample was 2.26 eV, with no prominent emission peak. The optical bandgaps of the etched colloidal SiC QDs samples were calculated to be between 2.55 eV and 3.09 eV for samples etched for 30 min and 2 h, respectively, which increased due to the decrease in particle size and the resulting increased coulombic interaction between electron–hole pairs. The electrochemical HOMO–LUMO gap of colloidal 3C-SiC QDs was determined by cyclic voltammetry, which showed a similar trend with the optical bandgaps of the QDs. The colloidal SiC QDs exhibited strong-blue-shifted emission at ~ 483 nm (2.56 eV) for the sample etched for 2 h, compared to a peak at 501 nm (2.48 eV) for the sample etched for 1 h. The sample etched for 2 h also showed a large Stokes shift of ~ 277 nm, which is a desired feature for wavelength down-conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and / or analysed during the current study may be made available on request.

References

  1. D. Dai, X. Guo, and J. Fan, Identification of luminescent surface defect in SiC quantum dots, Appl. Phys. Lett. 106(5) (2015) doi: https://doi.org/10.1063/1.4907674.

  2. Y. Li, X. Liu, T. Liang, J. Fan, Core and Surface Electronic States and Phonon Modes in SiC Quantum Dots Studied by Optical Spectroscopy and Hybrid TDDFT. J. Phys. Chem. C 125(13), 7259–7266 (2021). https://doi.org/10.1021/acs.jpcc.1c00209

    Article  CAS  Google Scholar 

  3. J.Y. Jung, K. Zhou, J.H. Bang, J.H. Lee, Improved photovoltaic performance of Si nanowire solar cells integrated with ZnSe quantum dots. J. Phys. Chem. C 116(23), 12409–12414 (2012). https://doi.org/10.1021/jp301683q

    Article  CAS  Google Scholar 

  4. H. R. Rajabi, Photocatalytic Activity of Quantum Dots, in Semiconductor Photocatalysis - Materials, Mechanisms and Applications, InTech, 2016https://doi.org/10.5772/63435

  5. D. Segets et al., Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. ACS Nano 6(10), 9021–9032 (2012). https://doi.org/10.1021/nn303130d

    Article  CAS  PubMed  Google Scholar 

  6. E. Kuçur, W. Bücking, R. Giernoth, T. Nann, Determination of defect states in semiconductor nanocrystals by cyclic voltammetry. J. Phys. Chem. B 109(43), 20355–20360 (Nov.2005). https://doi.org/10.1021/jp053891b

    Article  CAS  PubMed  Google Scholar 

  7. M. Amelia, C. Lincheneau, S. Silvi, A. Credi, Electrochemical properties of CdSe and CdTe quantum dots. Chem. Soc. Rev. 41(17), 5728–5743 (2012). https://doi.org/10.1039/c2cs35117j

    Article  CAS  PubMed  Google Scholar 

  8. M. Li, J. C. Li, and Q. Jiang, Size-dependent band-gap and dielectric constant of Si nanocrystals, in Intl. J. Modern Phys. B, Jun. 2010, pp. 2297–2301. doi: https://doi.org/10.1142/S0217979210064824

  9. M. Singh, K.K. Hlabana, S.K. Singhal, K. Devlal, Grain-size effects on the thermal conductivity of nanosolids. J. Taibah Univ. Sci. 10(3), 375–380 (2016). https://doi.org/10.1016/j.jtusci.2015.04.006

    Article  Google Scholar 

  10. C. Q. Sun, Oxidation electronics: Bond-band-barrier correlation and its applications, Progress in Materials Science, 48 (6). Elsevier Ltd, pp. 521–685, 2003. doi: https://doi.org/10.1016/S0079-6425(03)00010-0

  11. G. S. Selopal, H. Zhao, Z. M. Wang, and F. Rosei, “Core/Shell Quantum Dots Solar Cells, Adv Funct Mater, 30 (13) (2020) doi: https://doi.org/10.1002/adfm.201908762

  12. Q. Li et al., Nd2(S, Se, Te)3 Colloidal Quantum Dots: Synthesis, Energy Level Alignment, Charge Transfer Dynamics, and Their Applications to Solar Cells. Adv. Funct. Mater. 26(2), 254–266 (2016). https://doi.org/10.1002/adfm.201503433

    Article  CAS  Google Scholar 

  13. D.I. Son et al., Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7(7), 465–471 (2012). https://doi.org/10.1038/nnano.2012.71

    Article  CAS  PubMed  Google Scholar 

  14. Z. Luo et al., Microwave-Assisted Preparation of White Fluorescent Graphene Quantum Dots as a Novel Phosphor for Enhanced White-Light-Emitting Diodes. Adv. Funct. Mater. 26(16), 2739–2744 (2016). https://doi.org/10.1002/adfm.201505044

    Article  CAS  Google Scholar 

  15. N. A. A. Nazri, N. H. Azeman, Y. Luo, and A. A. A Bakar, Carbon quantum dots for optical sensor applications: A review, Optics and Laser Technology, 139. Elsevier Ltd, Jul. 01, 2021. doi: https://doi.org/10.1016/j.optlastec.2021.106928

  16. M. J. Molaei, Principles, mechanisms, and application of carbon quantum dots in sensors: A review, Analytical Methods, 12 (10). Royal Society of Chemistry, pp. 1266–1287, Mar. 14, 2020. doi: https://doi.org/10.1039/c9ay02696g.

  17. M. Rashid, N. M. Ahmed, N. A. M. Noor, and M. Z. Pakhuruddin, Silicon quantum dot/black silicon hybrid nanostructure for broadband reflection reduction, Mater Sci Semicond Process, 115, (2020), doi: https://doi.org/10.1016/j.mssp.2020.105113.

  18. M. B. de la Mora, O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez, and J. E. Lugo, Materials for downconversion in solar cells: Perspectives and challenges, Solar Energy Materials and Solar Cells, 165. Elsevier B.V., pp. 59–71, Jun. 01, 2017. doi: https://doi.org/10.1016/j.solmat.2017.02.016.

  19. T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92(3), 1668–1674 (2002). https://doi.org/10.1063/1.1492021

    Article  CAS  Google Scholar 

  20. L. Xian, X. Zhang, and X. Li, Voltammetric determination of electronic structure of quantum dots, Curr. Opin. Electrochem., 34. Elsevier B.V., Aug. 01, 2022. doi: https://doi.org/10.1016/j.coelec.2022.101022.

  21. S.N. Inamdar, P.P. Ingole, S.K. Haram, Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry. ChemPhysChem 9(17), 2574–2579 (Dec.2008). https://doi.org/10.1002/cphc.200800482

    Article  CAS  PubMed  Google Scholar 

  22. J. Zhu, Z. Liu, X. L. Wu, L. L. Xu, W. C. Zhang, and P. K. Chu, Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method, Nanotechnology, 18 (36), 2007, doi: https://doi.org/10.1088/0957-4484/18/36/365603

  23. F. Ren, S. Li, C. He, Electrolyte for quantum dot-sensitized solar cells assessed with cyclic voltammetry. Sci. China Mater. 58(6), 490–495 (2015). https://doi.org/10.1007/s40843-015-0054-1

    Article  CAS  Google Scholar 

  24. A.D. Yoffe, Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50(1), 1–208 (2001). https://doi.org/10.1080/00018730010006608

    Article  CAS  Google Scholar 

  25. D. Beke, Z. Szekrényes, I. Balogh, Z. Czigány, K. Kamarás, A. Gali, Preparation of small silicon carbide quantum dots by wet chemical etching. J. Mater. Res. 28(1), 44–49 (2013). https://doi.org/10.1557/jmr.2012.223

    Article  CAS  Google Scholar 

  26. B. Xiao, X. L. Wu, W. Xu, and P. K. Chu, Tunable electroluminescence from polymer-passivated 3C-SiC quantum dot thin films, Appl Phys Lett, 101 (12) (2012), doi: https://doi.org/10.1063/1.4753995

  27. D. Beke et al., Silicon carbide quantum dots for bioimaging. J. Mater. Res. 28(2), 205–209 (2013). https://doi.org/10.1557/jmr.2012.296

    Article  CAS  Google Scholar 

  28. Y. Li, C. Chen, J.T. Li, Y. Yang, Z.M. Lin, Surface charges and optical characteristic of colloidal cubic SiC nanocrystals. Nanoscale Res. Lett. 6, 1–7 (2011). https://doi.org/10.1186/1556-276X-6-454

    Article  CAS  Google Scholar 

  29. C. Wang et al., Synthesis of ultrafine silicon carbide nanoparticles using nonthermal arc plasma at atmospheric pressure. J. Am. Ceram. Soc. 104(8), 3883–3894 (2021). https://doi.org/10.1111/jace.17811

    Article  CAS  Google Scholar 

  30. X. Guo, X. Chen, B. Fan, Y. Zhang, and J. Fan, “Photon absorption and emission properties of 7 Å SiC nanoclusters: Electronic gap, surface state, and quantum size effect, Appl Phys Lett, 109(1) (2016) doi: https://doi.org/10.1063/1.4955125

  31. X. Guo, D. Dai, B. Fan, and J. Fan, Experimental evidence of α → β phase transformation in SiC quantum dots and their size-dependent luminescence, Appl Phys Lett, 105(19) (2014), doi: https://doi.org/10.1063/1.4901942

  32. S. Muhammad, A. T. Nomaan, AbdulmutolibO. Olaoye, M. I. Idris, and M. Rashid, Concentration dependence of physical properties of low temperature processed ZnO quantum dots thin films on polyethylene terephthalate as potential electron transport material for perovskite solar cell, Ceram Int, Jul. 2022, doi: https://doi.org/10.1016/j.ceramint.2022.07.077.

  33. A.A.P. Mansur, H.S. Mansur, F.P. Ramanery, L.C. Oliveira, P.P. Souza, ‘Green’ colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation of organic dye pollutants. Appl. Catal. B 158–159, 269–279 (2014). https://doi.org/10.1016/j.apcatb.2014.04.026

    Article  CAS  Google Scholar 

  34. A. O. Olaoye, T. O. Daniel, E. O. Olabomi, K. O. Olawale, and A. Mafe, Energy and Fuels: Structural and Optical Characterization of Cu2ZnSnS4 Solar Absorber Layer for Photovoltaic Application Using SILAR Method, in Green Energy and Technology, Springer Science and Business Media Deutschland GmbH, (2022), pp. 27–36. doi: https://doi.org/10.1007/978-3-030-96721-5_3

  35. B. J. Abdullah, Size effect of band gap in semiconductor nanocrystals and nanostructures from density functional theory within HSE06, Mater Sci Semicond Process, 137 (2022), doi: https://doi.org/10.1016/j.mssp.2021.106214.

  36. E.O. Chukwuocha, M.C. Onyeaju, T.S.T. Harry, Theoretical Studies on the Effect of Confinement on Quantum Dots Using the Brus Equation. World J. Condens. Matter Phys. 02(02), 96–100 (2012). https://doi.org/10.4236/wjcmp.2012.22017

    Article  CAS  Google Scholar 

  37. N. E. Makori, D. A. Oeba, and C. O. Mosiori, CODEN(USA): CRJHA5 Relationship between Band gap and particle size of Cadmium sulfide Quantum Dots, Chem. Res. J. 2017 (5), 15–21, [Online]. Available: https://ssrn.com/abstract=3148056

  38. H. Chen, J. Chiu, and T. Perng, On the Photoluminescence of Si Nanoparticles, (2001)

  39. H. Morisaki, F.W. Ping, H. Ono, K. Yazawa, Above-band-gap photoluminescence from Si fine particles with oxide shell. J. Appl. Phys. 70(3), 1869–1870 (1991). https://doi.org/10.1063/1.349510

    Article  CAS  Google Scholar 

  40. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett. 56(24), 2379–2380 (1990). https://doi.org/10.1063/1.102921

    Article  CAS  Google Scholar 

  41. A. Li, Feng Cui, L. Hu, and H. Wu, Above-band-gap photoluminescence from Si fine particles You may also like Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery, (1992)

  42. A. B. Dani Nandiyanto, Y. Kito, T. Hirano, R. Ragadhita, P. H. Le, and T. Ogi, Spherical submicron YAG:Ce particles with controllable particle outer diameters and crystallite sizes and their photoluminescence properties, RSC Adv, 11 (48) 30305–30314, (2021) doi: https://doi.org/10.1039/d1ra04800g

  43. P. Gupta and M. Ramrakhiani, Influence of the Particle Size on the Optical Properties of CdSe Nanoparticles, (2009)

  44. M. Rashid, B. R. Horrocks, N. Healy, J. P. Goss, and A. B. Horsfall, Optical properties of mesoporous 4H-SiC prepared by anodic electrochemical etching, J Appl Phys, 120 (19) (2016), doi: https://doi.org/10.1063/1.4968172

  45. J.Y. Fan, X.L. Wu, H.X. Li, H.W. Liu, G.G. Siu, P.K. Chu, Luminescence from colloidal 3C-SiC nanocrystals in different solvents. Appl. Phys. Lett. 88(4), 1–3 (2006). https://doi.org/10.1063/1.2168018

    Article  CAS  Google Scholar 

  46. X. Chen et al., Blue and green double band luminescent carbon quantum dots: Synthesis, origin of photoluminescence, and application in white light-emitting devices, Appl Phys Lett, 118(15) (2021), doi: https://doi.org/10.1063/5.0046495

  47. X.L. Wu, J.Y. Fan, T. Qiu, X. Yang, G.G. Siu, P.K. Chu, Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. Phys. Rev. Lett. 94(2), 1–4 (2005). https://doi.org/10.1103/PhysRevLett.94.026102

    Article  CAS  Google Scholar 

  48. C. Liu et al., Energy Down-Conversion Cs3Cu2Cl5 Nanocrystals for Boosting the Efficiency of UV Photodetector, Front Mater, 8, (2021), doi: https://doi.org/10.3389/fmats.2021.682833

  49. R.E. Aderne et al., On the energy gap determination of organic optoelectronic materials: The case of porphyrin derivatives. Mater Adv 3(3), 1791–1803 (2022). https://doi.org/10.1039/d1ma00652e

    Article  CAS  Google Scholar 

  50. P.P. Ingole et al., Band gap bowing at nanoscale: Investigation of CdSxSe 1–x alloy quantum dots through cyclic voltammetry and density functional theory. J. Phys. Chem. C 117(14), 7376–7383 (Apr.2013). https://doi.org/10.1021/jp400021u

    Article  CAS  Google Scholar 

  51. A. Shafiee and M. Yahaya, Determination of HOMO and LUMO of [6,6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester and Poly (3-octyl-thiophene-2, 5-diyl) through Voltametry Characterization (Penentuan HOMO dan LUMO Asid [6,6]-Fenil C61-butirik Ester 3-etiltiofena dan Poli (3-oktil-tiiofena-2, 5-diyl) menerusi Pencirian Voltametri), (2011)

  52. D.F. Garcia-Gutierrez, L.P. Hernandez-Casillas, M.V. Cappellari, F. Fungo, E. Martínez-Guerra, D.I. García-Gutiérrez, Influence of the Capping Ligand on the Band Gap and Electronic Levels of PbS Nanoparticles through Surface Atomistic Arrangement Determination. ACS Omega 3(1), 393–405 (2017). https://doi.org/10.1021/acsomega.7b01451

    Article  CAS  Google Scholar 

  53. A.U. Haq et al., Controlling the Energy-Level Alignment of Silicon Carbide Nanocrystals by Combining Surface Chemistry with Quantum Confinement. J. Phys. Chem. Lett. 11(5), 1721–1728 (2020). https://doi.org/10.1021/acs.jpclett.9b03828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. L.W. Wang, A. Zunger, Pseudopotential calculations of nanoscale CdSe quantum dots. Phys Rev B Condens Matter Mater Phys 53(15), 9579–9582 (1996). https://doi.org/10.1103/PhysRevB.53.9579

    Article  CAS  Google Scholar 

  55. A. J. deBethune, “Irreversible Thermodynamics in Electrochemistry,” J Electrochem Soc, vol. 107, no. 10, p. 829, 1960, doi: https://doi.org/10.1149/1.2427523.

  56. Y. Demirel and V. Gerbaud, Fundamentals of Equilibrium Thermodynamics, in Nonequilibrium Thermodynamics, Elsevier, (2019), 1–85. doi: https://doi.org/10.1016/B978-0-444-64112-0.00001-0

  57. P. Piotrowski et al., Mono-and di-pyrene [60]fullerene and [70]fullerene derivatives as potential components for photovoltaic devices, Molecules, 26(6), (2021), doi: https://doi.org/10.3390/molecules26061561

  58. Physical Interpretation of Device Characterization

  59. L. Leonat, G. Sbârcea, and I. V. Brânzoi, Cyclic voltammetry for energy levels estimation of organic materials, Bull. Series B, 75(3) (2013)

  60. L. P. Ding et al., Understanding the structural transformation, stability of medium-sized neutral and charged silicon clusters, Sci Rep, 5, (2015), doi: https://doi.org/10.1038/srep15951

  61. J.I. Aihara, Reduced HOMO-LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A 103(37), 7487–7495 (1999). https://doi.org/10.1021/jp990092i

    Article  CAS  Google Scholar 

  62. D. Mi, J.H. Kim, H.U. Kim, F. Xu, D.H. Hwang, Fullerene derivatives as electron acceptors for organic photovoltaic cells. J. Nanosci. Nanotechnol. 14(2), 1064–1084 (2014). https://doi.org/10.1166/jnn.2014.9007

    Article  CAS  PubMed  Google Scholar 

  63. M.D. Ganji, M. Tajbakhsh, M. Kariminasab, H. Alinezhad, Tuning the LUMO level of organic photovoltaic solar cells by conjugately fusing graphene flake: A DFT-B3LYP study. Physica E Low Dimens Syst Nanostruct 81, 108–115 (2016). https://doi.org/10.1016/j.physe.2016.03.008

    Article  CAS  Google Scholar 

  64. A.O. El-Ballouli, E. Alarousu, A.R. Kirmani, A. Amassian, O.M. Bakr, O.F. Mohammed, Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface. Adv. Funct. Mater. 25(48), 7435–7441 (2015). https://doi.org/10.1002/adfm.201504035

    Article  Google Scholar 

  65. B. Latha, P. Kumaresan, S. Nithiyanantham, K. Sampathkumar, Spectroscopic, Homo-Lumo and NLO studies of tetra fluoro phthalate doped Coumarin crystals using DFT method. J. Mol. Struct. 1142, 255–260 (2017). https://doi.org/10.1016/j.molstruc.2017.04.078

    Article  CAS  Google Scholar 

  66. O.O. Fredrick, C.M. Mangaka, Electrochemical and optical band gaps of bimetallic silver-platinum varying metal ratios nanoparticles. Afr. J. Pure Appl. Chem. 11(1), 1–8 (2017). https://doi.org/10.5897/ajpac2016.0700

    Article  CAS  Google Scholar 

  67. P. Camurlu, Polypyrrole derivatives for electrochromic applications. RSC. Adv. 4(99), 58321–55845 (2014).

  68. M.C. Brennan et al., Origin of the Size-Dependent Stokes Shift in CsPbBr 3 Perovskite Nanocrystals. J. Am. Chem. Soc. 139(35), 12201–12208 (2017). https://doi.org/10.1021/jacs.7b05683

    Article  CAS  PubMed  Google Scholar 

  69. Y. Liu, D. Kim, O.P. Morris, D. Zhitomirsky, J.C. Grossman, Origins of the Stokes Shift in PbS Quantum Dots: Impact of Polydispersity, Ligands, and Defects. ACS Nano 12(3), 2838–2845 (2018). https://doi.org/10.1021/acsnano.8b00132

    Article  CAS  PubMed  Google Scholar 

  70. C. Li et al., Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS 2 /ZnS Quantum Dots, Sci Rep, 5, (2015), doi: https://doi.org/10.1038/srep17777

  71. J.I. Aihara, Correlation found between the HOMO-LUMO energy separation and the chemical reactivity at the most reactive site for isolated-pentagon isomers of fullerenes. Phys. Chem. Chem. Phys. 2(14), 3121–3125 (Jul.2000). https://doi.org/10.1039/b002601h

    Article  CAS  Google Scholar 

  72. X. Guo, Y. Zhang, B. Fan, and J. Fan, Quantum confinement effect in 6H-SiC quantum dots observed via plasmon-exciton coupling-induced defect-luminescence quenching, Appl Phys Lett, 110(12) (2017), doi: https://doi.org/10.1063/1.4978903

  73. A.P. Sunitha, P. Hajara, M. Shaji, M.K. Jayaraj, K.J. Saji, Luminescent MoS2 quantum dots with reverse saturable absorption prepared by pulsed laser ablation. J. Lumin. 203, 313–321 (2018). https://doi.org/10.1016/j.jlumin.2018.06.004

    Article  CAS  Google Scholar 

  74. M. Rashid, A.K. Tiwari, J.P. Goss, M.J. Rayson, P.R. Briddon, A.B. Horsfall, Surface-state dependent optical properties of OH-, F-, and H-terminated 4H-SiC quantum dots. Phys. Chem. Chem. Phys. 18(31), 21676–21685 (2016). https://doi.org/10.1039/c6cp03775e

    Article  CAS  PubMed  Google Scholar 

  75. N. S. Satpute, C. M. Mehare, A. Tiwari, H. C. Swart, and S. J. Dhoble, Synthesis and Luminescence Characterization of Downconversion and Downshifting Phosphor for Efficiency Enhancement of Solar Cells: Perspectives and Challenges, ACS Applied Electronic Materials, 4, (7). American Chemical Society, pp. 3354–3391, Jul. 26, 2022. doi: https://doi.org/10.1021/acsaelm.2c00595.

Download references

Acknowledgements

I want to thank the School of Physics, Universiti Sains Malaysia for providing conducive environment and facilities for this research work. I also want to acknowledge the Federal Polytechnic Offa, Kwara State, Nigeria for my postgraduate sponsorship via Tertiary Education Trust Fund (TETFUND).

Funding

We, authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Olaoye Abdulmutolib Olajide: Conceptualization, Preparation, Characterization, Data curation, Writing original draft. Muhammad Sani: Writing review & editing. Mahayatun D. J. Ooi: CV characterization, Resources. Mohd Hazwan Hussin: Resource. Mohd Zamir Pakhuruddin: Investigation, Resource. Md. Roslan Hashim: Investigation, Resources. Marzaini Rashid: Conceptualization, Investigation, Writing-review & editing, Supervision.

Corresponding author

Correspondence to Marzaini Rashid.

Ethics declarations

Competing of interests

The authors declare that they have no conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olaoye, A.O., Sani, M., Ooi, M.D.J. et al. Determination of quantum size effect of colloidal SiC quantum dots by cyclic voltammetry. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00714-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00714-0

Keywords

Navigation