Skip to main content
Log in

Hydrogel advancements in vascular tissue regeneration: a comprehensive review and future prospects

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Vascular tissue regeneration has gained a lot of interest, especially in addressing the challenges associated with vascular-related diseases and injuries. Hydrogels have shown great promise in the field of vascular tissue regeneration because of their special features, which include biocompatibility and mechanical characteristics that may be adjusted, as well as their likeness to the natural extracellular matrix. The fabrication techniques for vascular scaffolds have been the subject of much investigation due to the effectiveness of scaffold-based tissue engineering in producing new blood vessel tissues. The creation of vascular scaffolds has been greatly aided by recent developments in 3D printing, which presents an encouraging concept for the vascularization of tissues. This review covers the various cutting-edge hydrogel formulations, fabrication techniques, and strategies for the development of functional and biocompatible vascular scaffolds. The review also reveals these novel hydrogel-based techniques’ possible uses, difficulties, and possibilities for the future of vascular tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  1. H. Thomas et al., Global Atlas of cardiovascular disease 2000–2016: The path to prevention and control. Global Heart 13(3), 143 (2018). https://doi.org/10.1016/j.gheart.2018.09.511

    Article  PubMed  Google Scholar 

  2. G.W. Stone et al., A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364(3), 226–235 (2011). https://doi.org/10.1056/nejmoa1002358

    Article  CAS  PubMed  Google Scholar 

  3. S. Stewart, K. MacIntyre, D.J. Hole, S. Capewell, J.J.V. McMurray, More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur. J. Heart Fail. 3(3), 315–322 (2001). https://doi.org/10.1016/S1388-9842(00)00141-0

    Article  CAS  PubMed  Google Scholar 

  4. C. V. C. Bouten, C. Cheng, I. M. Vermue, D. Gawlitta, and R. Passier, “Cardiovascular tissue engineering and regeneration: a plead for further knowledge convergence,” Tissue. Eng. Part A, 28(11–12) 525–541 https://doi.org/10.1089/ten.tea.2021.0231. Mary Ann Liebert Inc

  5. Qiongyu Li, “Authors : Ac ce d M us pt,” 2d Mater, pp. 0–23, 2018.

  6. W. Gu, X. Hong, C. Potter, A. Qu, Q. Xu, Mesenchymal stem cells and vascular regeneration. Microcirculation 24(1), 1–15 (2017). https://doi.org/10.1111/micc.12324

    Article  Google Scholar 

  7. Y. Fang, L. Ouyang, T. Zhang, C. Wang, B. Lu, and W. Sun, “Optimizing bifurcated channels within an anisotropic scaffold for engineering vascularized oriented tissues,” Adv. Healthc. Mater. 9(24) 2020. https://doi.org/10.1002/adhm.202000782.

  8. M. Carrabba, P. Madeddu, Current strategies for the manufacture of small size tissue engineering vascular grafts. Front Bioeng Biotechnol 6, 1–12 (2018). https://doi.org/10.3389/fbioe.2018.00041

    Article  Google Scholar 

  9. F.G. Aoki et al., De-epithelialization of porcine tracheal allografts as an approach for tracheal tissue engineering. Sci. Rep. 9(1), 1–12 (2019). https://doi.org/10.1038/s41598-019-48450-4

    Article  CAS  Google Scholar 

  10. H. Yin et al., Dual-encapsulated biodegradable 3D scaffold from liposome and waterborne polyurethane for local drug control release in breast cancer therapy. J. Biomater. Sci. Polym. Ed. 31(17), 2220–2237 (2020). https://doi.org/10.1080/09205063.2020.1796230

    Article  CAS  PubMed  Google Scholar 

  11. H.H.G. Song, R.T. Rumma, C.K. Ozaki, E.R. Edelman, C.S. Chen, Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell 22(3), 340–354 (2018). https://doi.org/10.1016/j.stem.2018.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. Huang et al., The long-term behaviors and differences in bone reconstruction of three polymer-based scaffolds with different degradability. J Mater Chem B 7(48), 7690–7703 (2019). https://doi.org/10.1039/c9tb02072a

    Article  CAS  PubMed  Google Scholar 

  13. C.V.C. Bouten, P.Y.W. Dankers, A. Driessen-Mol, S. Pedron, A.M.A. Brizard, F.P.T. Baaijens, Substrates for cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 63(4), 221–241 (2011). https://doi.org/10.1016/j.addr.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  14. S.G. Wise, M.J. Byrom, A. Waterhouse, P.G. Bannon, M.K.C. Ng, A.S. Weiss, A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater. 7(1), 295–303 (2011). https://doi.org/10.1016/j.actbio.2010.07.022

    Article  CAS  PubMed  Google Scholar 

  15. A. Hasan et al., “Electrospun scaffolds for tissue engineering of vascular grafts,” Acta. Biomater. 2013. https://doi.org/10.1016/j.actbio.2013.08.022.

  16. D.B. Das, T. Liu, Tissue engineering. Asia-Pac. J. Chem. Eng. 6(6), 813–815 (2011). https://doi.org/10.1002/apj.651

    Article  CAS  Google Scholar 

  17. J.T. Krawiec, D.A. Vorp, Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials 33(12), 3388–3400 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.014

    Article  CAS  PubMed  Google Scholar 

  18. R. Samuel et al., Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc Natl Acad Sci USA 110(31), 12774–12779 (2013). https://doi.org/10.1073/pnas.1310675110

    Article  PubMed  PubMed Central  Google Scholar 

  19. C.M. Murphy, F.J. O’Brien, D.G. Little, A. Schindeler, Cell-scaffold interactions in the bone tissue engineering triad. Euro Cells Mater 26, 120–132 (2013). https://doi.org/10.22203/eCM.v026a09. (AO Research Institute Davos)

    Article  CAS  Google Scholar 

  20. A.B. Ennett, D. Kaigler, D.J. Mooney, Temporally regulated delivery of VEGF in vitro and in vivo. J. Biomed. Mater. Res. A 79(1), 176–184 (2006). https://doi.org/10.1002/jbm.a.30771

    Article  CAS  PubMed  Google Scholar 

  21. Crispin B. Weinberg, E. Bell, A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736), 397–400 (1986)

    Article  CAS  PubMed  Google Scholar 

  22. S. Ravi, E.L. Chaikof, Biomaterials for vascular tissue engineering. Regen. Med. 5(1), 107–120 (2010). https://doi.org/10.2217/rme.09.77

    Article  CAS  PubMed  Google Scholar 

  23. W.G. Chang, L.E. Niklason, A short discourse on vascular tissue engineering. NPJ Regen Med 2, 1 (2017). https://doi.org/10.1038/s41536-017-0011-6

    Article  Google Scholar 

  24. E. Ercolani, C. Del Gaudio, A. Bianco, Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9(8), 861–888 (2015). https://doi.org/10.1002/term.1697

    Article  CAS  PubMed  Google Scholar 

  25. J. Eble, S. Niland, The extracellular matrix of blood vessels. Curr. Pharm. Des. 15(12), 1385–1400 (2009). https://doi.org/10.2174/138161209787846757

    Article  CAS  PubMed  Google Scholar 

  26. C.-Y. Chen et al., Blood flow reprograms lymphatic vessels to blood vessels. J. Clin. Investig. 122(6), 2006–2017 (2012). https://doi.org/10.1172/jci57513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Tennant, J.K. McGeachie, Blood vessel structure and function: a brief update on recent advances. Aust. N. Z. J. Surg. 60(10), 747–753 (1990). https://doi.org/10.1111/j.1445-2197.1990.tb07468.x

    Article  CAS  PubMed  Google Scholar 

  28. M.K. Pugsley, R. Tabrizchi, The vascular system. J. Pharmacol. Toxicol. Methods 44(2), 333–340 (2000). https://doi.org/10.1016/s1056-8719(00)00125-8

    Article  CAS  PubMed  Google Scholar 

  29. J.A. Eble, S. Niland, The extracellular matrix of blood vessels. Curr Pharm Des 15(12), 1385–1400 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. E. M. Conway, D. Collen, and P. Carmeliet, “Molecular mechanisms of blood vessel growth,” 2001. [Online]. Available: www.elsevier.com/locate/cardioreswww.elsevier.nl/locate/cardiores

  31. T. Nauta, V. van Hinsbergh, P. Koolwijk, Hypoxic signaling during tissue repair and regenerative medicine. Int. J. Mol. Sci. 15(11), 19791–19815 (2014). https://doi.org/10.3390/ijms151119791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C. López-Camarillo, E. Ruiz-García, N. Starling, and L. A. Marchat, “Editorial: Neovascularization, angiogenesis and vasculogenic mimicry in cancer,” Front Oncol. 10. Frontiers Media S.A., 2020. https://doi.org/10.3389/fonc.2020.01140.

  33. L. Elomaa, Y.P. Yang, Additive manufacturing of vascular grafts and vascularized tissue constructs. Tissue Eng Part B: Rev 23(5), 436–450 (2017). https://doi.org/10.1089/ten.teb.2016.0348. (Mary Ann Liebert Inc)

    Article  PubMed  Google Scholar 

  34. S. Negri, P. Faris, R. Berra-Romani, G. Guerra, and F. Moccia, “Endothelial transient receptor potential channels and vascular remodeling: extracellular Ca2 + entry for angiogenesis, arteriogenesis and vasculogenesis,” Front. Physiol. 10. Frontiers Media S.A. 2020. https://doi.org/10.3389/fphys.2019.01618.

  35. H. Saman, S. S. Raza, S. Uddin, and K. Rasul, “Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches,” Cancers. 12(5). MDPI AG 2020. https://doi.org/10.3390/cancers12051172.

  36. S. Y. Tan, Z. Leung, and A. R. Wu, “Recreating physiological environments in vitro: design rules for microfluidic-based vascularized tissue constructs,” Small. 16(9). Wiley-VCH Verlag, 2020. https://doi.org/10.1002/smll.201905055.

  37. J. Lee, K.Y. Lee, Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system. Pharm. Res. 26(7), 1739–1744 (2009). https://doi.org/10.1007/s11095-009-9884-4

    Article  CAS  PubMed  Google Scholar 

  38. B.M. Baker, B. Trappmann, S.C. Stapleton, E. Toro, C.S. Chen, Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13(16), 3246–3252 (2013). https://doi.org/10.1039/c3lc50493j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. J. Blinder, A. Freiman, N. Raindel, D. J. Mooney, and S. Levenberg, “Vasculogenic dynamics in 3D engineered tissue constructs,” Sci. Rep. 5 2015. https://doi.org/10.1038/srep17840.

  40. M.W. Laschke, M.D. Menger, Vascularization in tissue engineering: angiogenesis versus inosculation. Eur. Surg. Res. 48(2), 85–92 (2012). https://doi.org/10.1159/000336876

    Article  CAS  PubMed  Google Scholar 

  41. V. Wu et al., “Bone tissue regeneration in the oral and maxillofacial region: a review on the application of stem cells and new strategies to improve vascularization,” Stem. Cells. Intl. 2019. Hindawi Limited, 2019. https://doi.org/10.1155/2019/6279721.

  42. D. Sharma, D. Ross, G. Wang, W. Jia, S.J. Kirkpatrick, F. Zhao, Upgrading prevascularization in tissue engineering: a review of strategies for promoting highly organized microvascular network formation. Acta Biomaterialia. 95, 112–130 (2019). https://doi.org/10.1016/j.actbio.2019.03.016. (Acta Materialia Inc)

    Article  CAS  PubMed  Google Scholar 

  43. M.W. Laschke, M.D. Menger, Prevascularization in tissue engineering: current concepts and future directions. Biotechnol Adv. 34(2), 112–121 (2016). https://doi.org/10.1016/j.biotechadv.2015.12.004. (Elsevier Inc)

    Article  CAS  PubMed  Google Scholar 

  44. D. Gholobova, L. Terrie, M. Gerard, H. Declercq, and L. Thorrez, “Vascularization of tissue-engineered skeletal muscle constructs,” Biomaterials. 235 2020. https://doi.org/10.1016/j.biomaterials.2019.119708. Elsevier Ltd

  45. D. Kolte, J. A. McClung, and W. S. Aronow, “Vasculogenesis and angiogenesis,” in Translational Research in Coronary Artery Disease: Pathophysiology to Treatment, Elsevier Inc., 2016, pp. 49–65. https://doi.org/10.1016/B978-0-12-802385-3.00006-1.

  46. R.V. Badhe et al., A composite chitosan-gelatin bi-layered, biomimetic macroporous scaffold for blood vessel tissue engineering. Carbohydr. Polym. 157, 1215–1225 (2017). https://doi.org/10.1016/j.carbpol.2016.09.095

    Article  CAS  PubMed  Google Scholar 

  47. J. Oztemur, S. Ozdemir, H. Sezgin, and I. Yalcin-Enis, Hydrogel-based vascular grafts: state of art, 2023. https://doi.org/10.1016/B978-0-323-91753-7.00011-9.

  48. S. Mohapatra et al., Biomedical application, patent repository, clinical trial and regulatory updates on Hydrogel: an extensive review. Gels 7(4), 207 (2021). https://doi.org/10.3390/gels7040207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. S. Cascone and G. Lamberti, “Hydrogel-based commercial products for biomedical applications: a review,” Int. J. Pharm. 573 2020. https://doi.org/10.1016/j.ijpharm.2019.118803.

  50. L.M. Ricles et al., Therapeutic assessment of mesenchymal stem cells delivered within a PEGylated fibrin gel following an ischemic injury. Biomaterials 102, 9–19 (2016). https://doi.org/10.1016/j.biomaterials.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. I. Kim, S.S. Lee, S. Bae, H. Lee, N.S. Hwang, Heparin functionalized injectable cryogel with rapid shape-recovery property for neovascularization. Biomacromol 19(6), 2257–2269 (2018). https://doi.org/10.1021/acs.biomac.8b00331

    Article  CAS  Google Scholar 

  52. P.H. Kim et al., Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. J. Control. Release 187, 1–13 (2014). https://doi.org/10.1016/j.jconrel.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  53. V. Sacchi et al., Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc Natl Acad Sci USA 111(19), 6952–6957 (2014). https://doi.org/10.1073/pnas.1404605111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 2013(3), 38 (2013). https://doi.org/10.5339/gcsp.2013.38

    Article  Google Scholar 

  55. M. R. Singh, S. Patel, and D. Singh, “Natural polymer-based hydrogels as scaffolds for tissue engineering,” in Nanobiomaterials in Soft Tissue Engineering: Applications of Nanobiomaterials, Elsevier Inc., 2016, pp. 231–260. https://doi.org/10.1016/B978-0-323-42865-1.00009-X.

  56. S. Dhingra, R.D. Weisel, R.K. Li, Synthesis of aliphatic polyester hydrogel for cardiac tissue engineering. Methods Mol. Biol. 1181, 51–59 (2014). https://doi.org/10.1007/978-1-4939-1047-2_5

    Article  CAS  PubMed  Google Scholar 

  57. O. Janoušková, Synthetic polymer scaffolds for soft tissue engineering. Physiol Res 67, 335–348 (2018). https://doi.org/10.33549/physiolres.933983. (Czech Academy of Sciences)

    Article  Google Scholar 

  58. A.M.J. Coenen, K.V. Bernaerts, J.A.W. Harings, S. Jockenhoevel, S. Ghazanfari, Elastic materials for tissue engineering applications: natural, synthetic, and hybrid polymers. Acta Biomaterialia 79, 60–82 (2018). https://doi.org/10.1016/j.actbio.2018.08.027

    Article  CAS  PubMed  Google Scholar 

  59. G. Tarun, B. Ajay, K. Bhawna, K. Sunil, J. Ravi, and S. G. L. Bihani, “Scaffold: tissue engineering and regenerative medicine,” 2011. [Online]. Available: www.irjponline.com

  60. F. Y. Hsieh, L. Tao, Y. Wei, and S. H. Hsu, “A novel biodegradable self-healing hydrogel to induce blood capillary formation,” NPG Asia Mater, vol. 9, no. 3, 2017. https://doi.org/10.1038/am.2017.23.

  61. G. Sun, Y.I. Shen, S. Kusuma, K. Fox-Talbot, C.J. Steenbergen, S. Gerecht, Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32(1), 95–106 (2011). https://doi.org/10.1016/j.biomaterials.2010.08.091

    Article  CAS  PubMed  Google Scholar 

  62. J.R. Saunders, S. Abu-Salih, T. Khaleque, S. Hanula, W. Moussa, Modeling theories of intelligent hydrogel polymers. J. Comput. Theor. Nanosci. 5(10), 1942–1960 (2008). https://doi.org/10.1166/jctn.2008.1001

    Article  CAS  Google Scholar 

  63. A. Nicosia, M. Salamone, S. Costa, M. A. Ragusa, and G. Ghersi, “Mimicking molecular pathways in the design of smart hydrogels for the design of vascularized engineered tissues,” Intl. J. Mol. Sci. 24(15). Multidisciplinary Digital Publishing Institute (MDPI), 2023. https://doi.org/10.3390/ijms241512314.

  64. X. Li, X. Su, Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 6(29), 4714–4730 (2018). https://doi.org/10.1039/c8tb01078a. (Royal Society of Chemistry)

    Article  CAS  PubMed  Google Scholar 

  65. A. Bordbar-Khiabani and M. Gasik, “Smart hydrogels for advanced drug delivery systems,” Intl. J. Mol. Sci. 23(7) 2022. https://doi.org/10.3390/ijms23073665.

  66. S. Mantha et al., “Smart hydrogels in tissue engineering and regenerative medicine,” Materials. 12(20). MDPI AG 2019. https://doi.org/10.3390/ma12203323.

  67. R. Duncan, Polymer therapeutics as nanomedicines: new perspectives. Curr. Opin. Biotechnol. 22(4), 492–501 (2011). https://doi.org/10.1016/j.copbio.2011.05.507

    Article  CAS  PubMed  Google Scholar 

  68. X. Zheng, P. Zhang, Z. Fu, S. Meng, L. Dai, H. Yang, Applications of nanomaterials in tissue engineering. RSC Adv 11(31), 19041–19058 (2021). https://doi.org/10.1039/d1ra01849c. (Royal Society of Chemistry)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. K.A. Rocco, M.W. Maxfield, C.A. Best, E.W. Dean, C.K. Breuer, In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Eng Part B: Rev 20(6), 628–640 (2014). https://doi.org/10.1089/ten.teb.2014.0123. (Mary Ann Liebert Inc)

    Article  CAS  PubMed  Google Scholar 

  70. M. Vert, Degradable polymers in medicine: Updating strategies and terminology. Inl J Artif Organs 34(2), 76–83 (2011). https://doi.org/10.5301/IJAO.2011.6400. (Wichtig Publishing Srl)

    Article  CAS  Google Scholar 

  71. C.S. Hughes, L.M. Postovit, G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9), 1886–1890 (2010). https://doi.org/10.1002/pmic.200900758

    Article  CAS  PubMed  Google Scholar 

  72. O. Smidsrod, G. Skjakbrk, Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71–78 (1990). https://doi.org/10.1016/0167-7799(90)90139-o

    Article  CAS  PubMed  Google Scholar 

  73. F.A. Johnson, D.Q.M. Craig, A.D. Mercer, Characterization of the block structure and molecular weight of sodium alginates. J. Pharm. Pharmacol. 49(7), 639–643 (1997). https://doi.org/10.1111/j.2042-7158.1997.tb06085.x

    Article  CAS  PubMed  Google Scholar 

  74. M.A. LeRoux, F. Guilak, L.A. Setton, Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J. Biomed. Mater. Res. 47(1), 46–53 (1999). https://doi.org/10.1002/(sici)1097-4636(199910)47:1<46::aid-jbm6>3.0.co;2-n

  75. P. Eiselt, K.Y. Lee, D.J. Mooney, Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules 32(17), 5561–5566 (1999). https://doi.org/10.1021/ma990514m

    Article  CAS  Google Scholar 

  76. K.Y. Lee, J.A. Rowley, P. Eiselt, E.M. Moy, K.H. Bouhadir, D.J. Mooney, Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33(11), 4291–4294 (2000). https://doi.org/10.1021/ma9921347

    Article  CAS  Google Scholar 

  77. A. Barre et al., An alginate-based hydrogel with a high angiogenic capacity and a high osteogenic potential. Biores Open Access 9(1), 174–182 (2020). https://doi.org/10.1089/biores.2020.0010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. P. Castillo-Briceño Patricia et al., A role for specific collagen motifs during wound healing and inflammatory response of fibroblasts in the teleost fish gilthead seabream. Mol Immunol 4(6–7), 826–834 (2011). https://doi.org/10.1016/j.molimm.2010.12.004

    Article  CAS  Google Scholar 

  79. K. Gelse, E. Pöschl, T. Aigner, Collagens - structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55(12), 1531–1546 (2003). https://doi.org/10.1016/j.addr.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  80. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, JD. Watson Molecular biology of the cell (third edition) Garland Publishing, New York and London 1994 22 164-164

  81. C. H. Lee, A. Singla, and Y. Lee, “Biomedical applications of collagen,” 2001. [Online]. Available: www.elsevier.com/locate/ijpharm

  82. C.R. Lee, A.J. Grodzinsky, M. Spector, The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 22(23), 3145–3154 (2001). https://doi.org/10.1016/s0142-9612(01)00067-9

    Article  CAS  PubMed  Google Scholar 

  83. G. Chen, T. Ushida, T. Tateishi, Development of biodegradable porous scaffolds for tissue engineering. Mater. Sci. Eng. C. 17(1–2), 63–69 (2001). https://doi.org/10.1016/s0928-4931(01)00338-1

    Article  Google Scholar 

  84. S.-N. Park, J.-C. Park, H.O. Kim, M.J. Song, H. Suh, Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials 23(4), 1205–1212 (2002). https://doi.org/10.1016/s0142-9612(01)00235-6

    Article  CAS  PubMed  Google Scholar 

  85. J.A. Claudio-Rizo, J. Delgado, I.A. Quintero-Ortega, J.L. Mata-Mata, B. Mendoza-Novelo, “Decellularized ECM-derived hydrogels: modification and properties”, in Hydrogels. INTECH (2018). https://doi.org/10.5772/intechopen.78331

    Article  Google Scholar 

  86. J. A. Claudio-Rizo, B. Mendoza-Novelo, J. Delgado, L. E. Castellano, and J. L. Mata-Mata, “A new method for the preparation of biomedical hydrogels comprised of extracellular matrix and oligourethanes,” Biomed. Mater. (Bristol) 11(3) 2016. https://doi.org/10.1088/1748-6041/11/3/035016.

  87. Z. Tian, W. Liu, G. Li, The microstructure and stability of collagen hydrogel cross-linked by glutaraldehyde. Polym. Degrad. Stab. 130, 264–270 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.06.015

    Article  CAS  Google Scholar 

  88. A. Borzacchiello, L. Ambrosio, Network formation of low molecular weight hyaluronic acid derivatives. J. Biomater. Sci. Polym. Ed. 12(3), 307–316 (2001). https://doi.org/10.1163/156856201750180834

    Article  CAS  PubMed  Google Scholar 

  89. E. A. Balazs, Viscoelastic properties of Hyaluronan and its therapeutic use**in this chapter, Vitreus will be used as a noun, designating the connective tissue surrounded by the lens, ciliary body and retina. thus vitreus will replace vitreous humor, vitreous body and vitreous. the two rheological states of the vitreus will be designated as gel vitreus and Liquid Vitreus. vitreous will be used, as an adjective, in the following manner: Vitreous anomalies, vitreous strands, vitreous implants, etc.. from ref. 189. Chemistry and Biology of Hyaluronan. 415–455 (2004). https://doi.org/10.1016/b978-008044382-9/50051-0

  90. A. Gamini et al., Structural investigations of cross-linked hyaluronan. Biomaterials 23(4), 1161–1167 (2002). https://doi.org/10.1016/s0142-9612(01)00231-9

    Article  CAS  PubMed  Google Scholar 

  91. G.D. Prestwich, D.M. Marecak, J.F. Marecek, K.P. Vercruysse, M.R. Ziebell, Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J. Control. Release 53(1–3), 93–103 (1998). https://doi.org/10.1016/s0168-3659(97)00242-3

    Article  CAS  PubMed  Google Scholar 

  92. S. Oerther et al., High interaction alginate–hyaluronate associations by hyaluronate deacetylation for the preparation of efficient biomaterials. Biopolymers 54(4), 273–281 (2000). https://doi.org/10.1002/1097-0282(20001005)54:4<273::aid-bip40>3.3.co;2-9

  93. K.P. Vercruysse, D.M. Marecak, J.F. Marecek, G.D. Prestwich, Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjug Chem 8(5), 686–694 (1997). https://doi.org/10.1021/bc9701095

    Article  CAS  PubMed  Google Scholar 

  94. G. Miralles et al., Sodium alginate sponges with or without sodium hyaluronate:in vitro engineering of cartilage. J. Biomed. Mater. Res. 57(2), 268–278 (2001). https://doi.org/10.1002/1097-4636(200111)57:2<268::aid-jbm1167>3.0.co;2-l

  95. S. Oerther et al., Hyaluronate-alginate gel as a novel biomaterial: mechanical properties and Formation Mechanism. Biotechnol. Bioeng. 63(2), 206–215 (1999). https://doi.org/10.1002/(sici)1097-0290(19990420)63:2<206::aid-bit9>3.3.co;2-#

  96. K. Tomihata, Y. Ikada, In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7), 567–575 (1997). https://doi.org/10.1016/s0142-9612(96)00167-6

    Article  CAS  PubMed  Google Scholar 

  97. K.Y. Lee, W.S. Ha, W.H. Park, Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials 16(16), 1211–1216 (1995). https://doi.org/10.1016/0142-9612(95)98126-y

    Article  CAS  PubMed  Google Scholar 

  98. K. M. Vårum, H. Kristiansen Holme, M. Izume, B. Torger Stokke, O. Smidsrød, Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans. Biochimica et Biophysica Acta (BBA) - General Subjects 1291(1), 5–15 (1996).  https://doi.org/10.1016/0304-4165(96)00038-4

  99. Y. Zhang, M. Zhang, Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J. Biomed. Mater. Res. 55(3), 304–312 (2001). https://doi.org/10.1002/1097-4636(20010605)55:3<304::aid-jbm1018>3.0.co;2-j

  100. P.J. VandeVord, H.W.T. Matthew, S.P. DeSilva, L. Mayton, B. Wu, P.H. Wooley, Evaluation of the biocompatibility of a chitosan scaffold in mice. J. Biomed. Mater. Res. 59(3), 585–590 (2002). https://doi.org/10.1002/jbm.1270

    Article  CAS  PubMed  Google Scholar 

  101. J.-K. Francis Suh, H. W. T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24), 2589–2598 (2000). https://doi.org/10.1016/s0142-9612(00)00126-5

  102. K.Y. Lee, D.J. Mooney, Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1879 (2001). https://doi.org/10.1021/cr000108x

    Article  CAS  PubMed  Google Scholar 

  103. A. Chenite et al., Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21), 2155–2161 (2000). https://doi.org/10.1016/s0142-9612(00)00116-2

    Article  CAS  PubMed  Google Scholar 

  104. K. Ono et al., Photocrosslinkable Chitosan as a biological adhesive. J. Biomed. Mater. Res. 49(2), 289–295 (2000). https://doi.org/10.1002/(sici)1097-4636(200002)49:2<289::aid-jbm18>3.0.co;2-m

  105. F.-L. Mi, C.-Y. Kuan, S.-S. Shyu, S.-T. Lee, S.-F. Chang, The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydr. Polym. 41(4), 389–396 (2000). https://doi.org/10.1016/s0144-8617(99)00104-6

    Article  CAS  Google Scholar 

  106. F. Shen et al., A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering. Polym. Int. 49(12), 1596–1599 (2000). https://doi.org/10.1002/1097-0126(200012)49:12<1596::aid-pi553>3.3.co;2-j

  107. V. W. M. Van Hinsbergh, A. Collen, and P. Koolwijk, “Role of fibrin matrix in angiogenesis,” in Annals of the New York Academy of Sciences, New York Academy of Sciences, 2001 426–437. https://doi.org/10.1111/j.1749-6632.2001.tb03526.x.

  108. F.M. Shaikh, A. Callanan, E.G. Kavanagh, P.E. Burke, P.A. Grace, T.M. McGloughlin, Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 188(4), 333–346 (2008). https://doi.org/10.1159/000139772

    Article  CAS  PubMed  Google Scholar 

  109. P.A. Janmey, J.P. Winer, J.W. Weisel, Fibrin gels and their clinical and bioengineering applications. J Royal Soc Inter 6(30), 1–10 (2009). https://doi.org/10.1098/rsif.2008.0327

    Article  CAS  Google Scholar 

  110. J. W. Weisel, “Fibrinogen and fibrin,” 2005, https://doi.org/10.1016/S0065-3233(04)70008-X.

  111. A.C. O’Sullivan, Cellulose 4(3), 173–207 (1997). https://doi.org/10.1023/a:1018431705579

    Article  Google Scholar 

  112. N. Petersen, P. Gatenholm, Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5), 1277–1286 (2011). https://doi.org/10.1007/s00253-011-3432-y

    Article  CAS  PubMed  Google Scholar 

  113. H. Bäckdahl et al., Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9), 2141–2149 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.026

    Article  CAS  PubMed  Google Scholar 

  114. G.M. Cruise, D.S. Scharp, J.A. Hubbell, Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19(14), 1287–1294 (1998). https://doi.org/10.1016/s0142-9612(98)00025-8

    Article  CAS  PubMed  Google Scholar 

  115. J.L. West, J.A. Hubbell, Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32(1), 241–244 (1999). https://doi.org/10.1021/ma981296k

    Article  CAS  Google Scholar 

  116. S.J. Bryant, K.S. Anseth, The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22(6), 619–626 (2001). https://doi.org/10.1016/s0142-9612(00)00225-8

    Article  CAS  PubMed  Google Scholar 

  117. K.M. Huh, Y.H. Bae, Synthesis and characterization of poly(ethylene glycol)/poly(L-lactic acid) alternating multiblock copolymers. Polymer 40(22), 6147–6155 (1999). https://doi.org/10.1016/s0032-3861(98)00822-2

    Article  CAS  Google Scholar 

  118. A. Metters, Fundamental studies of a novel, biodegradable PEG-B-pla hydrogel. Polymer 41(11), 3993–4004 (2000). https://doi.org/10.1016/s0032-3861(99)00629-1

    Article  CAS  Google Scholar 

  119. M.G. Cascone, M. Laus, D. Ricci, R. Sbarbati Del Guerra, Evaluation of poly(vinyl alcohol) hydrogels as a component of hybrid artificial tissues. J. Mater. Sci. Mater. Med. 6(2), 71–75 (1995). https://doi.org/10.1007/bf00120410

    Article  CAS  Google Scholar 

  120. C.R. Nuttelman, D.J. Mortisen, S.M. Henry, K.S. Anseth, Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. J. Biomed. Mater. Res. 57(2), 217–223 (2001). https://doi.org/10.1002/1097-4636(200111)57:2<217::aid-jbm1161>3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  121. I. Orienti, R. Treré, V. Zecchi, Hydrogels formed by cross-linked polyvinylalcohol as colon-specific drug delivery systems. Drug Dev. Ind. Pharm. 27(8), 877–884 (2001). https://doi.org/10.1081/ddc-100107253

    Article  CAS  PubMed  Google Scholar 

  122. J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24), 4337–4351 (2003). https://doi.org/10.1016/S0142-9612(03)00340-5

    Article  CAS  PubMed  Google Scholar 

  123. S. Bak, T. Ahmad, Y. Bin Lee, J.Y. Lee, E.M. Kim, H. Shin, Delivery of a cell patch of cocultured endothelial cells and smooth muscle cells using thermoresponsive hydrogels for enhanced angiogenesis. Tissue Eng Part A. 22(1–2), 182–193 (2016). https://doi.org/10.1089/ten.tea.2015.0124

    Article  CAS  PubMed  Google Scholar 

  124. S. Yasmeen, M.K. Lo, S. Bajracharya, M. Roldo, Injectable scaffolds for bone regeneration. Langmuir 30(43), 12977–12985 (2014). https://doi.org/10.1021/la503057w

    Article  CAS  PubMed  Google Scholar 

  125. X.L. Hou et al., Injectable polypeptide-engineered hydrogel depot for amplifying the anti-tumor immune effect induced by chemo-photothermal therapy. J Mater Chem B 8(37), 8623–8633 (2020). https://doi.org/10.1039/d0tb01370f

    Article  CAS  PubMed  Google Scholar 

  126. S.H. Park, J.Y. Park, Y.B. Ji, H.J. Ju, B.H. Min, M.S. Kim, An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold. Acta Biomater. 117, 108–120 (2020). https://doi.org/10.1016/j.actbio.2020.09.013

    Article  CAS  PubMed  Google Scholar 

  127. N. Pettinelli, S. Rodríguez-Llamazares, R. Bouza, L. Barral, S. Feijoo-Bandín, and F. Lago, “Carrageenan-based physically crosslinked injectable hydrogel for wound healing and tissue repairing applications,” Int. J. Pharm. 589 2020. https://doi.org/10.1016/j.ijpharm.2020.119828.

  128. C. Hu, F. Zhang, L. Long, Q. Kong, R. Luo, Y. Wang, Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J. Control. Release 324, 204–217 (2020). https://doi.org/10.1016/j.jconrel.2020.05.010

    Article  CAS  PubMed  Google Scholar 

  129. R. Tiruvannamalai Annamalai, A.Y. Rioja, A.J. Putnam, J.P. Stegemann, Vascular network formation by human microvascular endothelial cells in modular fibrin microtissues. ACS Biomater Sci Eng 2(11), 1914–1925 (2016). https://doi.org/10.1021/acsbiomaterials.6b00274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Y. Wang et al., “Endothelialized microrods for minimally invasive in situ neovascularization,” Biofabrication. 12(1), 2020. https://doi.org/10.1088/1758-5090/ab47eb.

  131. Quazi, “© 2022 by the author(s). Distributed under a Creative Commons CC BY license.,” 0171119931 1–41, 2022. https://doi.org/10.20944/preprints202109.0104.v1.

  132. Muazzam Nasrullah 2018 et al., “乳鼠心肌提取 HHS Public Access,” Physiol Behav 176 (1)139–148. 2016. https://doi.org/10.1016/j.actbio.2020.03.005.Rapid

  133. A. Serafim et al., Bioinspired hydrogel coating based on methacryloyl gelatin bioactivates polypropylene meshes for abdominal wall repair. Polymers (Basel) 12(8), 1–15 (2020). https://doi.org/10.3390/POLYM12081677

    Article  Google Scholar 

  134. J. Vajda, M. Milojević, U. Maver, B. Vihar, Microvascular tissue engineering—a review. Biomedicines 9(6), 1–27 (2021). https://doi.org/10.3390/biomedicines9060589

    Article  CAS  Google Scholar 

  135. T. Hozumi, T. Kageyama, S. Ohta, J. Fukuda, T. Ito, Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by Schiff’s base formation. Biomacromol 19(2), 288–297 (2018). https://doi.org/10.1021/acs.biomac.7b01133

    Article  CAS  Google Scholar 

  136. S.F. Karkan, S. Davaran, R. Rahbarghazi, R. Salehi, A. Akbarzadeh, Electrospun nanofibers for the fabrication of engineered vascular grafts. J. Biol. Eng. 13(1), 1–13 (2019). https://doi.org/10.1186/s13036-019-0199-7

    Article  CAS  Google Scholar 

  137. Z. Wang et al., Functionalization of electrospun poly(ε-caprolactone) scaffold with heparin and vascular endothelial growth factors for potential application as vascular grafts. J. Bioact. Compat. Polym. 28(2), 154–166 (2013). https://doi.org/10.1177/0883911512469707

    Article  CAS  Google Scholar 

  138. P. Wang, Y. Sun, X. Shi, H. Shen, H. Ning, H. Liu, 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes Manuf 4(2), 344–378 (2021). https://doi.org/10.1007/s42242-020-00109-0

    Article  PubMed  PubMed Central  Google Scholar 

  139. X. Dong et al., Construction of a bilayered vascular graft with smooth internal surface for improved hemocompatibility and endothelial cell monolayer formation. Biomaterials 181, 1–14 (2018). https://doi.org/10.1016/j.biomaterials.2018.07.027

    Article  CAS  PubMed  Google Scholar 

  140. S.Y. Hann et al., Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl. Res. 211, 46–63 (2019). https://doi.org/10.1016/j.trsl.2019.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. H. Xing, H. Lee, L. Luo, T.R. Kyriakides, Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 42, 107421 (2020). https://doi.org/10.1016/j.biotechadv.2019.107421

    Article  CAS  PubMed  Google Scholar 

  142. J. Jang et al., 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112, 264–274 (2017). https://doi.org/10.1016/j.biomaterials.2016.10.026

    Article  CAS  PubMed  Google Scholar 

  143. L. Sun et al., Molecularly engineered metal-based bioactive soft materials – neuroactive magnesium ion/polymer hybrids. Acta Biomater. 85, 310–319 (2019). https://doi.org/10.1016/j.actbio.2018.12.040

    Article  CAS  PubMed  Google Scholar 

  144. H. Liu, S. Kitano, S. Irie, R. Levato, M. Matsusaki, Collagen microfibers induce blood capillary orientation and open vascular lumen. Adv Biosyst 4(5), 1–8 (2020). https://doi.org/10.1002/adbi.202000038

    Article  CAS  Google Scholar 

  145. L. Shao et al., Sacrificial microgel-laden bioink-enabled 3D bioprinting of mesoscale pore networks. Biodes Manuf 3(1), 30–39 (2020). https://doi.org/10.1007/s42242-020-00062-y

    Article  CAS  Google Scholar 

  146. Q. Gao et al., 3D bioprinting of vessel-like structures with multilevel fluidic channels. ACS Biomater. Sci. Eng. 3(3), 399–408 (2017). https://doi.org/10.1021/acsbiomaterials.6b00643

    Article  CAS  PubMed  Google Scholar 

  147. F. Liu et al., Poly(l-lactide-co-caprolactone)/tussah silk fibroin nanofiber vascular scaffolds with small diameter fabricated by core-spun electrospinning technology. J. Mater. Sci. 55(16), 7106–7119 (2020). https://doi.org/10.1007/s10853-020-04510-z

    Article  CAS  Google Scholar 

  148. S.H. Kim et al., Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun. 9(1), 1–14 (2018). https://doi.org/10.1038/s41467-018-03759-y

    Article  CAS  Google Scholar 

  149. S. Jordahl et al., Engineered fibrillar fibronectin networks as three-dimensional tissue scaffolds. Adv. Mater. 31(46), 1–10 (2019). https://doi.org/10.1002/adma.201904580

    Article  CAS  Google Scholar 

  150. W. Wang et al., Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique. Acta Biomater. 79, 168–181 (2018). https://doi.org/10.1016/j.actbio.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  151. Q. Gao, Y. He, J.Z. Fu, A. Liu, L. Ma, Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61, 203–215 (2015). https://doi.org/10.1016/j.biomaterials.2015.05.031

    Article  CAS  PubMed  Google Scholar 

  152. H. Zhao et al., Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle. Small 14(39), 1–7 (2018). https://doi.org/10.1002/smll.201802630

    Article  CAS  Google Scholar 

  153. M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575(7782), 330–335 (2019). https://doi.org/10.1038/s41586-019-1736-8

    Article  CAS  PubMed  Google Scholar 

  154. K. Christensen, Z. Zhang, C. Xu, Y. Huang, Deformation compensation during buoyancy-enabled inkjet printing of three-dimensional soft tubular structures. J. Manuf. Sci. E. T. ASME 140(1), 1–39 (2018). https://doi.org/10.1115/1.4037996

    Article  Google Scholar 

  155. I. Liashenko, J. Rosell-Llompart, A. Cabot, Ultrafast 3D printing with submicrometer features using electrostatic jet deflection. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-020-14557-w

    Article  CAS  Google Scholar 

  156. Y. Du et al., Effect of bi-directional microfabricated topographical cues on cellular behavior of mammalian cell line. Microelectron. Eng. 124, 37–41 (2014). https://doi.org/10.1016/j.mee.2014.04.010

    Article  CAS  Google Scholar 

  157. M. Yeo, G.H. Kim, Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation. Acta Biomater. 107, 102–114 (2020). https://doi.org/10.1016/j.actbio.2020.02.042

    Article  CAS  PubMed  Google Scholar 

  158. M. Costantini, A. Barbetta, Gas foaming technologies for 3D scaffold engineering. Elsevier Ltd (2018). https://doi.org/10.1016/B978-0-08-100979-6.00006-9

    Article  Google Scholar 

  159. S.A. Poursamar, J. Hatami, A.N. Lehner, C.L. Da Silva, F.C. Ferreira, A.P.M. Antunes, Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment. Mater. Sci. Eng., C 48, 63–70 (2015). https://doi.org/10.1016/j.msec.2014.10.074

    Article  CAS  Google Scholar 

  160. S. Chaudhary, E. Chakraborty, Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy. Beni Suef Univ J Basic Appl Sci 11(1), 1–15 (2022). https://doi.org/10.1186/s43088-021-00172-1

    Article  CAS  Google Scholar 

  161. A. Eltom, G. Zhong, and A. Muhammad, “Scaffold techniques and designs in tissue engineering functions and purposes: a review,” Adv. Mater. Sci. Eng. 2019, 2019. https://doi.org/10.1155/2019/3429527.

  162. S.K. Norouzi, A. Shamloo, Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods. Mater. Sci. Eng., C 94, 1067–1076 (2019). https://doi.org/10.1016/j.msec.2018.10.016

    Article  CAS  Google Scholar 

  163. S.H. Oh, S.G. Kang, E.S. Kim, S.H. Cho, J.H. Lee, Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24(22), 4011–4021 (2003). https://doi.org/10.1016/S0142-9612(03)00284-9

    Article  CAS  PubMed  Google Scholar 

  164. H. Cao, L. Duan, Y. Zhang, J. Cao, and K. Zhang, “Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity,” Sig. Transduct. Targeted. Ther. 6(1) 2021. https://doi.org/10.1038/s41392-021-00830-x.

  165. N. Ghane, M.H. Beigi, S. Labbaf, M.H. Nasr-Esfahani, A. Kiani, Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J. Mater. Chem. B 8(47), 10712–10738 (2020). https://doi.org/10.1039/d0tb01842b. (Royal Society of Chemistry)

    Article  CAS  PubMed  Google Scholar 

  166. S.B. Gutekunst et al., 3D hydrogels containing interconnected microchannels of subcellular size for capturing human pathogenic Acanthamoeba castellanii. ACS Biomater. Sci. Eng. 5(4), 1784–1792 (2019). https://doi.org/10.1021/acsbiomaterials.8b01009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. W.M. Han, M. Mohiuddin, S.E. Anderson, A.J. García, Y.C. Jang, Co-delivery of Wnt7a and muscle stem cells using synthetic bioadhesive hydrogel enhances murine muscle regeneration and cell migration during engraftment. Acta Biomater. 94, 243–252 (2019). https://doi.org/10.1016/j.actbio.2019.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. L. Wang et al., Development of a centrally vascularized tissue engineering bone graft with the unique core-shell composite structure for large femoral bone defect treatment. Biomaterials 175, 44–60 (2018). https://doi.org/10.1016/j.biomaterials.2018.05.017

    Article  CAS  PubMed  Google Scholar 

  169. B. Wang, W. Li, D. Dean, M.K. Mishra, K.S. Wekesa, Enhanced hepatogenic differentiation of bone marrow derived mesenchymal stem cells on liver ECM hydrogel. J. Biomed. Mater. Res. A 106(3), 829–838 (2018). https://doi.org/10.1002/jbm.a.36278

    Article  CAS  PubMed  Google Scholar 

  170. S.L. Faley et al., iPSC-derived brain endothelium exhibits stable, long-term barrier function in perfused hydrogel scaffolds. Stem Cell Rep 12(3), 474–487 (2019). https://doi.org/10.1016/j.stemcr.2019.01.009

    Article  CAS  Google Scholar 

  171. J.C. Chappell, S.M. Taylor, N. Ferrara, V.L. Bautch, Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev. Cell 17(3), 377–386 (2009). https://doi.org/10.1016/j.devcel.2009.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. X. Li, L. Claesson-Welsh, M. Shibuya, Chapter 13 VEGF receptor signal transduction. Methods Enzymol 443, 261–284 (2008). https://doi.org/10.1016/S0076-6879(08)02013-2

    Article  CAS  PubMed  Google Scholar 

  173. V. Nehls, D. Drenckhahn, A microcarrier-based cocultivation system for the investigation of factors and cells involved in angiogenesis in three-dimensional fibrin matrices in vitro. Histochem. Cell Biol. 104(6), 459–466 (1995). https://doi.org/10.1007/bf01464336

    Article  CAS  PubMed  Google Scholar 

  174. M. N. Nakatsu, J. Davis, and C. C. W. Hughes, “Optimized fibrin gel bead assay for the study of angiogenesis,” J. Visual. Exp. 3 2007. https://doi.org/10.3791/186.

  175. C.M. Ghajar et al., The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94(5), 1930–1941 (2008). https://doi.org/10.1529/biophysj.107.120774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. A. Lesman, J. Koffler, R. Atlas, Y.J. Blinder, Z. Kam, S. Levenberg, Engineering vessel-like networks within multicellular fibrin-based constructs. Biomaterials 32(31), 7856–7869 (2011). https://doi.org/10.1016/j.biomaterials.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  177. D. Hanjaya-Putra et al., Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118(3), 804–815 (2011). https://doi.org/10.1182/blood-2010-12-327338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. D. Hanjaya-Putra, K.T. Wong, K. Hirotsu, S. Khetan, J.A. Burdick, S. Gerecht, Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 33(26), 6123–6131 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Y.C. Chen et al., Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 22(10), 2027–2039 (2012). https://doi.org/10.1002/adfm.201101662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. T.D. Stocco et al., Carbon nanomaterial-based hydrogels as scaffolds in tissue engineering: a comprehensive review. Intl J Nanomed 18, 6153–6183 (2023). https://doi.org/10.2147/IJN.S436867. (Dove Medical Press Ltd)

    Article  CAS  Google Scholar 

  181. R. Bai et al., “Conductive single-wall carbon nanotubes/extracellular matrix hybrid hydrogels promote the lineage-specific development of seeding cells for tissue repair through reconstructing an integrin-dependent niche,” J. Nanobiotechnology. 19 2021. https://doi.org/10.1186/s12951-021-00993-3.

  182. S.C. Neves, L. Moroni, C.C. Barrias, P.L. Granja, Leveling up hydrogels: hybrid systems in tissue engineering. Trends Biotechnol 38, 292–315 (2020). https://doi.org/10.1016/j.tibtech.2019.09.004. (Elsevier Ltd)

    Article  CAS  PubMed  Google Scholar 

  183. E.L. Hopley, S. Salmasi, D.M. Kalaskar, A.M. Seifalian, Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol Adv 32(5), 1000–1014 (2014). https://doi.org/10.1016/j.biotechadv.2014.05.003. (Elsevier Inc)

    Article  CAS  PubMed  Google Scholar 

  184. S.R. Shin et al., Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6(1), 362–372 (2012). https://doi.org/10.1021/nn203711s

    Article  CAS  PubMed  Google Scholar 

  185. S. Ahadian et al., Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomater. 31, 134–143 (2016). https://doi.org/10.1016/j.actbio.2015.11.047

    Article  CAS  PubMed  Google Scholar 

  186. R.R. Rao, A.W. Peterson, J. Ceccarelli, A.J. Putnam, J.P. Stegemann, Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 15(2), 253–264 (2012). https://doi.org/10.1007/s10456-012-9257-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. R.K. Singh, D. Seliktar, A.J. Putnam, Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials 34(37), 9331–9340 (2013). https://doi.org/10.1016/j.biomaterials.2013.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. E.P. Sproul, R.T. Hannan, A.C. Brown, Controlling fibrin network morphology, polymerization, and degradation dynamics in fibrin gels for promoting tissue repair. Methods Mol Biol 1758, 85–99 (2018). https://doi.org/10.1007/978-1-4939-7741-3_7

    Article  CAS  PubMed  Google Scholar 

  189. G. Kim, S. Ahn, Y. Kim, Y. Cho, W. Chun, Coaxial structured collagen-alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. J. Mater. Chem. 21(17), 6165–6172 (2011). https://doi.org/10.1039/c0jm03452e

    Article  CAS  Google Scholar 

  190. G. L. Ying et al., “Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels,” Adv. Mater. 30(50) 2018. https://doi.org/10.1002/adma.201805460.

  191. J.S. Jeon et al., Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integrative Biology (United Kingdom) 6(5), 555–563 (2014). https://doi.org/10.1039/c3ib40267c

    Article  CAS  Google Scholar 

  192. A. Sobrino et al., “3D microtumors in vitro supported by perfused vascular networks,” Sci. Rep. 6 2016. https://doi.org/10.1038/srep31589.

  193. Q. Pi et al., “Digitally tunable microfluidic bioprinting of multilayered cannular tissues,” Adv. Mater. 30(43) 2018. https://doi.org/10.1002/adma.201706913.

  194. L. Xu et al., “Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step,” Biofabrication. 12(4) 2020. https://doi.org/10.1088/1758-5090/aba2b6.

Download references

Funding

The authors would like to thank the Science, Technology, and Innovation Funding Authority (STDF), Egypt (FLUG Call 1—Project ID 46715) for funding a research project relevant to this review topic.

Author information

Authors and Affiliations

Authors

Contributions

HAE: literature survey, writing original draft; HAM: literature survey, writing original draft; MHY: writing—review and editing; IME: conceptualization; supervision; writing—review and editing.

Corresponding author

Correspondence to Ibrahim M. El-Sherbiny.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Ibrahim M. El-Sherbiny.

Google Scholar: https://scholar.google.com/citations?hl=en&user=YkQjnu4AAAAJ&view_op=list_works&sortby=pubdate.

Scopus: https://www.scopus.com/authid/detail.uri?authorId=8681880000.

Hend A. Elshabrawy:.

Google Scholar: https://scholar.google.com/citations?user=TgSMsVgAAAAJ&hl=en.

Magdi H. Yacoub:.

Scopus: https://www.scopus.com/authid/detail.uri?authorId=36041927900.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshabrawy, H.A., Moustafa, H.A., Yacoub, M.H. et al. Hydrogel advancements in vascular tissue regeneration: a comprehensive review and future prospects. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00678-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00678-1

Keywords

Navigation