Skip to main content

Advertisement

Log in

Development of eco-friendly microwaved chitosan-based nanocomposite membrane for efficient capturing of cationic dyes from aqueous solution: permeability and fouling studies

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Removing deleterious cationic dyes from wastewater is crucial due to their persistence, toxicity, and harmful effects on public health and ecosystems. In this study, microwaved chitosan nanoparticles (MWCNP) were synthesized and characterized using transmission electron microscopy and Fourier-transform infrared spectroscopy to assess their size and functional groups. Then, nascent polyvinylidene fluoride-polyethylene glycol membrane and composite membranes were fabricated with varying MWCNP concentrations (0.3–1.0 wt.%) through the non-solvent phase inversion (NIPs) technique. The resulting membranes underwent analysis for porosity, contact angle, tensile strength, energy dispersive X-ray (EDX), field emission scanning electron microscopy (FESEM), permeate flux, surface zeta potential, fouling resistance, and dye removal. Composite membranes outperformed nascent ones, with the 0.7 wt.% MWCNP composite membrane exhibiting the best performance, having a contact angle of 49.8°, a zeta potential of − 47.4 mV, tensile strength of 2.9 MPa, porosity of 83.7%, methylene blue removal of 96.7%, and permeate flux of 125.3 L.m−2.h−1. The 0.7 wt.% MWCNP composite membrane also showed enhanced antifouling properties after three filtration cycles with an FRR of 80.7% and an RFR of 16.2%. These results demonstrate the efficiency of MWCNP-containing membranes, making them suitable for textile wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All the data have been obtained from our laboratory experiment and analysis.

References

  1. C. Zamora-ledezma, D. Negrete-bolagay, F. Figueroa, E. Zamora-ledezma, M. Ni, F. Alexis, V.H. Guerrero, Environmental technology & innovation heavy metal water pollution : a fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 22, 101504 (2021)

    Article  CAS  Google Scholar 

  2. X. Yang, Y. Li, Q. Du, J. Sun, L. Chen, S. Hu, Z. Wang, Y. Xia, L. Xia, Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. J. Colloid Interface Sci. 453, 107–114 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. E.T. Helmy, A. El Nemr, M. Mousa, E. Arafa, S. Eldafrawy, Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C, S co-doped TiO2 nanoparticles. J. Water Environ. Nanotechnol. 3, 116–127 (2018)

    CAS  Google Scholar 

  4. S. Sarkar, N.T. Ponce, A. Banerjee, R. Bandopadhyay, S. Rajendran, E. Lichtfouse, Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environ. Chem. Lett. 18, 1569–1580 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Li, J. Sun, Q. Du, L. Zhang, X. Yang, S. Wu, Y. Xia, Z. Wang, L. Xia, A. Cao, Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning. Carbohydr. Polym. 102, 755–761 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. M.M. El-Zawahry, F. Abdelghaffar, R.A. Abdelghaffar, A.G. Hassabo, Equilibrium and kinetic models on the adsorption of reactive black 5 from aqueous solution using Eichhornia crassipes/chitosan composite. Carbohydr. Polym. 136, 507–515 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9, 430 (2019)

    Article  CAS  Google Scholar 

  8. M.C. Nayak, A.M. Isloor, A. Moslehyani, N. Ismail, A.F. Ismail, Fabrication of novel PPSU/ZSM-5 ultrafiltration hollow fiber membranes for separation of proteins and hazardous reactive dyes. J. Taiwan Inst. Chem. Eng. 82, 342–350 (2018)

    Article  CAS  Google Scholar 

  9. R. Zhang, Y. Liu, Y. Li, Q. Han, T. Zhang, K. Zeng, C. Zhao, Preparation of polyvinylidene fluoride modified membrane by tannin and halloysite nanotubes for dyes and antibiotics removal. J. Mater. Sci. 56, 10218–10230 (2021)

    Article  ADS  CAS  Google Scholar 

  10. K.K. Katibi, K.F. Yunos, H.C. Man, A.Z. Aris, M. Zuhair, R. Syahidah, Recent advances in the rejection of endocrine-disrupting compounds from water using membrane and membrane bioreactor technologies : a review. Polymers (Basel). 13, 392 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T.T. Van Tran, S.R. Kumar, S.J. Lue, Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interaction. J. Memb. Sci. 575, 38–49 (2019)

    Article  CAS  Google Scholar 

  12. N. Abdali, A. Marjani, F. Heidary, M. Adimi, Fabrication of PVA coated PES/PVDF nanocomposite membranes embedded with: in situ formed magnetite nanoparticles for removal of metal ions from aqueous solutions. New J. Chem. 41, 6405–6414 (2017)

    Article  CAS  Google Scholar 

  13. M.U. Abba, H.C. Man, S. Azis, A.I. Idris, H. Hamzah, K.F. Yunos, K.K. Katibi, Novel PVDF-PVP hollow fibre membrane augmented with TiO 2 nanoparticles: Preparation, characterization and application for copper removal from leachate. Nanomater. 11(2), 1–18 (2021). https://doi.org/10.3390/nano11020399

  14. M. Kadhom, B. Deng, Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl. Mater. Today 11, 219–230 (2018)

    Article  Google Scholar 

  15. X.H. Ma, Z. Yang, Z.K. Yao, Z.L. Xu, C.Y. Tang, A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. J. Memb. Sci. 525, 269–276 (2017)

    Article  CAS  Google Scholar 

  16. L. Li, J. Zhang, Y. Li, C. Yang, Removal of Cr (VI) with a spiral wound chitosan nanofiber membrane module via dead-end filtration. J. Memb. Sci. 544, 333–341 (2017)

    Article  CAS  Google Scholar 

  17. M. Mozafari, S.F. Seyedpour, S.K. Salestan, A. Rahimpour, A.A. Shamsabadi, M.D. Firouzjaei, M.R. Esfahani, A. Tiraferri, H. Mohsenian, M. Sangermano, M. Soroush, Facile Cu-BTC surface modification of thin chitosan film coated polyethersulfone membranes with improved antifouling properties for sustainable removal of manganese. J. Memb. Sci. 588, 117200 (2019)

    Article  CAS  Google Scholar 

  18. X. He, K. Li, R. Xing, S. Liu, L. Hu, P. Li, The production of fully deacetylated chitosan by compression method. Egypt. J. Aquat. Res. 42, 75–81 (2016)

    Article  Google Scholar 

  19. L.F. Zhu, J.S. Li, J. Mai, M.W. Chang, Ultrasound-assisted synthesis of chitosan from fungal precursors for biomedical applications. Chem. Eng. J. 357, 498–507 (2019)

    Article  CAS  Google Scholar 

  20. J. Sebastian, T. Rouissi, S.K. Brar, K. Hegde, M. Verma, Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass. Carbohydr. Polym. 219, 431–440 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. R.C. da Silva, S.B. de Aguiar, P.L.R. da Cunha, R.C.M. de Paula, J.P.A. Feitosa, Effect of microwave on the synthesis of polyacrylamide-g-chitosan gel for azo dye removal. React. Funct. Polym. 148, 104491 (2020)

    Article  Google Scholar 

  22. Y. Tian, D. Estevez, H. Wei, M. Peng, L. Zhou, P. Xu, C. Wu, M. Yan, H. Wang, H.X. Peng, F. Qin, Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 421, 129781 (2021)

    Article  CAS  Google Scholar 

  23. J. Cheng, H. Zhu, J. Huang, J. Zhao, B. Yan, S. Ma, H. Zhang, D. Fan, The physicochemical properties of chitosan prepared by microwave heating. Food Sci. Nutr. 8, 1987–1994 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Roy, N.R. Singha, Polymeric nanocomposite membranes for next generation pervaporation process: strategies, challenges and future prospects. Membranes (Basel) 7, 53 (2017)

    Article  PubMed  Google Scholar 

  25. C. Dong, G. He, H. Li, R. Zhao, Y. Han, Y. Deng, Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles. J. Memb. Sci. 387–388, 40–47 (2012)

    Article  Google Scholar 

  26. S. Han, L. Mao, T. Wu, H. Wang, Homogeneous polyethersulfone hybrid membranes prepared with in-suit synthesized magnesium hydroxide nanoparticles by phase inversion method. J. Memb. Sci. 516, 47–55 (2016)

    Article  CAS  Google Scholar 

  27. K.K. Katibi, K.F. MdYunos, H.C. Man, A.Z. Aris, M.Z.M. Nor, R.S. Azis, Influence of functionalized hematite nanoparticles as a reinforcer for composite PVDF-PEG membrane for BPF rejection: permeability and anti-fouling studies. J. Polym. Environ. 31, 768 (2022)

    Article  Google Scholar 

  28. M.H. Mostafa, M.A. Elsawy, M.S.A. Darwish, L.I. Hussein, A.H. Abdaleem, Microwave-assisted preparation of chitosan/ZnO nanocomposite and its application in dye removal. Mater. Chem. Phys. 248, 122914 (2020)

    Article  CAS  Google Scholar 

  29. M.R.S. Kebria, A. Rahimpour, G. Bakeri, R. Abedini, Experimental and theoretical investigation of thin ZIF-8/chitosan coated layer on air gap membrane distillation performance of PVDF membrane. Desalination 450, 21–32 (2019)

    Article  CAS  Google Scholar 

  30. W. Fan, W. Yan, Z. Xu, H. Ni, Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surfaces B Biointerfaces 90, 21–27 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. P.A. Vinodhini, K. Sangeetha, G. Thandapani, P.N. Sudha, V. Jayachandran, A. Sukumaran, FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes. Int. J. Biol. Macromol. 104, 1721–1729 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. A. Sethi, M. Ahmad, T. Huma, I. Khalid, I. Ahmad, Evaluation of low molecular weight cross linked chitosan nanoparticles, to enhance the bioavailability of 5-flourouracil. Dose-Response 19, 1–12 (2021)

    Article  Google Scholar 

  33. X. Wang, Y. Hu, Z. Zhang, B. Zhang, The application of thymol-loaded chitosan nanoparticles to control the biodeterioration of cultural heritage sites. J. Cult. Herit. 53, 206–211 (2022)

    Article  Google Scholar 

  34. M. Hadidi, S. Pouramin, F. Adinepour, S. Haghani, S.M. Jafari, Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 236, 116075 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. H. el Knidri, J. Dahmani, A. Addaou, A. Laajeb, A. Lahsini, Rapid and efficient extraction of chitin and chitosan for scale-up production: effect of process parameters on deacetylation degree and molecular weight. Int. J. Biol. Macromol. 139, 1092–1102 (2019)

    Article  PubMed  Google Scholar 

  36. L. Penabad-Peña, J. Herrera-Morales, M. Betancourt, E. Nicolau, Cellulose acetate/P4VP- b-PEO membranes for the adsorption of electron-deficient pharmaceutical compounds. ACS Omega 4, 22456–22463 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  37. T.A. Otitoju, M. Ahmadipour, S. Li, N.F. Shoparwe, L.X. Jie, A.L. Owolabi, Influence of nanoparticle type on the performance of nanocomposite membranes for wastewater treatment. J. Water Process Eng. 36, 101356 (2020)

    Article  Google Scholar 

  38. A.S. Montaser, A.R. Wassel, O.N. Al-Shaye’a, Synthesis, characterization and antimicrobial activity of Schiff bases from chitosan and salicylaldehyde/TiO 2 nanocomposite membrane. Int. J. Biol. Macromol. 124, 802–809 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Wang, Y. Liu, Y. Yu, H. Huang, Influence of CNT-rGO composite structures on their permeability and selectivity for membrane water treatment. J. Memb. Sci. 551, 326–332 (2018)

    Article  CAS  Google Scholar 

  40. S. Zinadini, V. Vatanpour, A.A. Zinatizadeh, M. Rahimi, Z. Rahimi, M. Kian, Preparation and characterization of antifouling graphene oxide/polyethersulfone ultrafiltration membrane: application in MBR for dairy wastewater treatment. J. Water Process Eng. 7, 280–294 (2015)

    Article  Google Scholar 

  41. S.M.M. Morsi, H.A. Mohamed, S.H. El-Sabbagh, Polyesteramidesulfone as novel reinforcement and antioxidant nanofiller for NBR blended with reclaimed natural rubber. Mater. Chem. Phys. 224, 206–216 (2019)

    Article  CAS  Google Scholar 

  42. Z. Wang, Y. Tang, T. Wang, K. Liang, Nano CuAl2O4 spinel mineral as a novel antibacterial agent for PVDF membrane modification with minimized copper leachability. J. Hazard. Mater. 368, 421–428 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. A. Razzaz, S. Ghorban, L. Hosayni, M. Irani, M. Aliabadi, Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J. Taiwan Inst. Chem. Eng. 58, 333–343 (2016)

    Article  CAS  Google Scholar 

  44. T.T. Nguyen, T.K. Phung, X.T. Bui, V.D. Doan, T. Van Tran, D. Van Nguyen, K.T. Lim, T.D. Nguyen, Removal of cationic dye using polyvinyl alcohol membrane functionalized by D-glucose and agar. J. Water Process Eng. 40, 101982 (2021)

    Article  Google Scholar 

  45. X. Dong, D. Lu, T.A.L. Harris, I.C. Escobar, Polymers and solvents used in membrane fabrication: a review focusing on sustainable membrane development. Membranes (Basel) 11, 309 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. K.K. Katibi, K.F. Yunos, H.C. Man, A.Z. Aris, M.Z.M. Nor, R.S. Azis, P.S. Goh, N. Zainuddin, A.F. Ismail, Development of novel fouling-resistant hollow fibre nanocomposite membrane augmented with iron oxide nanoparticles for efficient rejection of bisphenol a from water: fouling, permeability, and mechanism studies. J. Polym. Environ. 31, 2880–2901 (2023)

    Article  CAS  Google Scholar 

  47. Y.L. Ji, Q.F. An, X.D. Weng, W.S. Hung, K.R. Lee, C.J. Gao, Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation. J. Memb. Sci. 548, 559–571 (2018)

    Article  CAS  Google Scholar 

  48. M.L.K. Pedersen, T.R. Jensen, S.V. Kucheryavskiy, M.E. Simonsen, Investigation of surface energy, wettability and zeta potential of titanium dioxide/graphene oxide membranes. J. Photochem. Photobiol. A Chem. 366, 162–170 (2018)

    Article  CAS  Google Scholar 

  49. A.K. An, J. Guo, E.J. Lee, S. Jeong, Y. Zhao, Z. Wang, T.O. Leiknes, PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J. Memb. Sci. 525, 57–67 (2017)

    Article  CAS  Google Scholar 

  50. M. Najafi, R. Rahimi, Synthesis of novel Zr-MOF/Cloisite-30B nanocomposite for anionic and cationic dye adsorption: optimization by design-expert, kinetic, thermodynamic, and adsorption study. J. Inorg. Organomet. Polym. 33, 138–150 (2023). https://doi.org/10.1007/s10904-022-02471-1

  51. K. Fischer, M. Grimm, J. Meyers, C. Dietrich, R. Gläser, A. Schulze, Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. J. Memb. Sci. 478, 49–57 (2015)

    Article  CAS  Google Scholar 

  52. M. Kumar, A.M. Isloor, S.R. Todeti, A.F. Ismail, R. Farnood, Hydrophilic nano-aluminum oxide containing polyphenylsulfone hollow fiber membranes for the extraction of arsenic (As-V) from drinking water. J. Water Process Eng. 44, 102357 (2021)

    Article  Google Scholar 

  53. H. Zangeneh, A.A. Zinatizadeh, S. Zinadini, M. Feyzi, D.W. Bahnemann, A novel photocatalytic self-cleaning PES nanofiltration membrane incorporating triple metal-nonmetal doped TiO2 (K-B-N-TiO2) for post treatment of biologically treated palm oil mill effluent. React. Funct. Polym. 127, 139–152 (2018)

    Article  CAS  Google Scholar 

  54. N.R.J. Hynes, J.S. Kumar, H. Kamyab, J.A.J. Sujana, O.A. Al-Khashman, Y. Kuslu, A. Ene, B. Suresh Kumar, Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -a comprehensive review. J. Clean. Prod. 272, 122636 (2020)

    Article  CAS  Google Scholar 

  55. M.T. Amin, A.A. Alazba, M. Shafiq, Adsorptive removal of reactive black 5 from wastewater using bentonite clay: isotherms, kinetics and thermodynamics. Sustain. 7, 15302–15318 (2015)

    Article  CAS  Google Scholar 

  56. D. Pathania, S. Sharma, P. Singh, Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 10, S1445–S1451 (2017)

    Article  CAS  Google Scholar 

  57. G. Abdi, A. Alizadeh, S. Zinadini, G. Moradi, Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J. Memb. Sci. 552, 326–335 (2018)

    Article  CAS  Google Scholar 

  58. C. Santhosh, E. Daneshvar, K.M. Tripathi, P. Baltrėnas, T.Y. Kim, E. Baltrėnaitė, A. Bhatnagar, Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and Acid orange 7 dye from aqueous solution. Environ. Sci. Pollut. Res. 27, 32874–32887 (2020)

    Article  CAS  Google Scholar 

  59. S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, M. Beygzadeh, Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 349, 145–154 (2014)

    Article  CAS  Google Scholar 

  60. W. Chen, J. Mo, X. Du, Z. Zhang, W. Zhang, Biomimetic dynamic membrane for aquatic dye removal. Water Res. 151, 243–251 (2019)

    Article  CAS  PubMed  Google Scholar 

  61. Z. He, D.J. Miller, S. Kasemset, D.R. Paul, B.D. Freeman, The effect of permeate flux on membrane fouling during microfiltration of oily water. J. Memb. Sci. 525, 25–34 (2017)

    Article  CAS  Google Scholar 

  62. K.K. Katibi, M. Zuhair, M. Nor, K.F. Yunos, J. Jaafar, Strategies to enhance the membrane-based processing performance for fruit juice production: a review. Membranes (Basel) 13, 679 (2023)

    Article  CAS  PubMed  Google Scholar 

  63. J. Yun, Y. Wang, Z. Liu, Y. Li, H. Yang, Z. Liang Xu, High efficient dye removal with hydrolyzed ethanolamine-polyacrylonitrile UF membrane: rejection of anionic dye and selective adsorption of cationic dye. Chemosphere 259, 127390 (2020)

    Article  CAS  PubMed  Google Scholar 

  64. J. Ding, L. Pu, D. Zou, M. Cao, C. Shan, Q. Zhang, G. Gao, B. Pan, Removal of model dyes on charged UF membranes: experiment and simulation. Chemosphere 240, 124940 (2020)

    Article  CAS  PubMed  Google Scholar 

  65. M. Schwarze, D. Seo, B. Bibouche, R. Schomäcker, Comparison of positively charged polymer species and cationic surfactants for methyl orange removal via polyelectrolyte and micellar enhanced ultrafiltration. J. Water Process Eng. 36, 101287 (2020)

    Article  Google Scholar 

  66. R. Chen, Y. Nie, Y. Hu, R. Miao, T. Utashiro, Q. Li, M. Xu, Y.Y. Li, Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature. J. Memb. Sci. 531, 1–9 (2017)

    Article  CAS  Google Scholar 

  67. B. Boruah, P.K. Samantaray, G. Madras, J.M. Modak, S. Bose, Sustainable photocatalytic water remediation via dual active strongly coupled AgBiO3 on PVDF/PBSA membranes. Chem. Eng. J. 394, 124777 (2020)

    Article  CAS  Google Scholar 

  68. S. Saki, N. Uzal, Preparation and characterization of PSF/PEI/CaCO3 nanocomposite membranes for oil/water separation. Environ. Sci. Pollut. Res. 25, 25315–25326 (2018)

    Article  CAS  Google Scholar 

  69. Z. Huang, L. Shen, H. Lin, B. Li, C. Chen, Y. Xu, R. Li, M. Zhang, D. Zhao, Fabrication of fibrous MXene nanoribbons (MNRs) membrane with efficient performance for oil-water separation. J. Memb. Sci. 661, 120949 (2022)

    Article  CAS  Google Scholar 

  70. J.H. Zuo, Z.K. Li, C. Wei, X. Yan, Y. Chen, W.Z. Lang, Fine tuning the pore size and permeation performances of thermally induced phase separation (TIPS) -prepared PVDF membranes with saline water as quenching bath. J. Memb. Sci. 577, 79–90 (2019)

    Article  CAS  Google Scholar 

  71. S. Guo, J. Du, F. Yan, Z. Wang, J. Wang, Fabrication of anti-fouling polyamide nanofiltration membrane by incorporating streptomycin as a novel co-monomer. Chin. J. Chem. Eng. 50, 185 (2022)

    Article  CAS  Google Scholar 

  72. L.D. Quan, N.H. Dang, T.H. Tu, V.N. Phuong Linh, L.T. Mong Thy, H.M. Nam, M.T. Phong, N.H. Hieu, Preparation of magnetic iron oxide/graphene aerogel nanocomposites for removal of bisphenol A from water. Synth. Met. 255, 116106 (2019)

    Article  CAS  Google Scholar 

  73. Y. Zhu, J. Wei, H. Zhang, K. Liu, Z. Kong, Y. Dong, G. Jin, J. Tian, Z. Qin, Fabrication of composite membrane with adsorption property and its application to the removal of endocrine disrupting compounds during filtration process. Chem. Eng. J. 352, 53–63 (2018)

    Article  CAS  Google Scholar 

  74. K. Baransi-Karkaby, M. Bass, V. Freger, In situ modification of reverse osmosis membrane elements for enhanced removal of multiple micropollutants. Membranes (Basel) 9, 28 (2019)

    Article  PubMed  Google Scholar 

  75. M.F. Rabuni, N.M.N. Sulaiman, M.K. Aroua, C. Yern, N.A. Hashim, Impact of in situ physical and chemical cleaning on PVDF membrane properties and performances. Chem. Eng. Sci. 122, 426–435 (2015)

    Article  CAS  Google Scholar 

  76. D. Roy, A. Khosravanipour Mostafazadeh, P. Drogui, R. D. Tyagi, Removal of Organic Micro-Pollutants by Membrane Filtration (Elsevier B.V., 2020)

  77. X. Zhang, Y. Zhang, T. Wang, Z. Fan, G. Zhang, A thin film nanocomposite membrane with pre-immobilized UiO-66-NH2 toward enhanced nanofiltration performance. RSC Adv. 9, 24802–24810 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. B. Zhang, W. Wang, L. Zhu, N. Li, X. Chen, J. Tian, X. Zhang, Simultaneously enhanced permeability and anti-fouling performance of polyethersulfone ultrafiltration membranes by structural control and mixed carbon quantum dots. J. Memb. Sci. 641, 119931 (2022)

    Article  CAS  Google Scholar 

  79. L. Meng, J. Xi, M. Yeung, Degradation of extracellular polymeric substances (EPS) extracted from activated sludge by low-concentration ozonation. Chemosphere 147, 248–255 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. F. Li, Q. Xia, Y. Gao, Q. Cheng, L. Ding, B. Yang, Q. Tian, C. Ma, W. Sand, Y. Liu, Anaerobic biodegradation and decolorization of a refractory acid dye by a forward osmosis membrane bioreactor. Environ. Sci. Water Res. Technol. 4, 272–280 (2018)

    Article  CAS  Google Scholar 

  81. F. Meng, S. Zhang, Y. Oh, Z. Zhou, H.S. Shin, S.R. Chae, Fouling in membrane bioreactors: an updated review. Water Res. 114, 151–180 (2017)

    Article  CAS  PubMed  Google Scholar 

  82. G. Zeng, Z. Ye, Y. He, X. Yang, J. Ma, H. Shi, Z. Feng, Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater. Chem. Eng. J. 323, 572–583 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Higher Education (MOHE), under FRGS with grant number FRGS/1/2019/TK10/UPM/02 and the Tertiary Education Trust Fund, through Kwara State University, Malete, Nigeria (TETF/UNIV/KWASU/ASTD/2019). This research was also partially supported by the Kurita Asia Research Grant (grant number: 22Pmy004) provided by the Kurita Water and Environment Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Kamil Kayode Katibi, Noordinie Afina bt. Noorisma Khairul Aqmar, and Hanis Masyithah Binti Ilias: experiment, methodology, and original draft. Khairul Faezah Md Yunos: conceptualization and methodology. Ibrahim Garba Shitu: conceptualization and visualization. Kamil Kayode Katibi and Ibrahim Garba Shitu: methodology and visualization. Kamil Kayode Katibi: methodology, supervision, and visualization. Siti Hajar bt Othman: methodology and data curation. Khairul Faezah Md Yunos, Siti Hajar bt Othman, Ahmad Fauzi Ismail, and Kamil Kayode Katibi: data curation, methodology, writing—review and editing, and resources.

Corresponding authors

Correspondence to Kamil Kayode Katibi or Khairul Faezah Md Yunos.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katibi, K.K., Shitu, I.G., Othman, S.H.b. et al. Development of eco-friendly microwaved chitosan-based nanocomposite membrane for efficient capturing of cationic dyes from aqueous solution: permeability and fouling studies. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00664-7

Keywords

Navigation