Skip to main content

Advertisement

Log in

Rapid detections of food pathogens using metal, semiconducting nanoparticles, and their hybrids: a review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Over the years, food-borne illnesses possess a major public health concern around the world, especially those in low-income countries and rural areas. In spite of all safety precautions and control measures to prevent the cause of food-borne bacterial pathogens, there are global demands for rapid detection approaches. Although traditional methods for detecting food-borne bacteria are very accurate, they are very time-consuming, expensive, and also need trained personnel. In recent years, nanotechnology-based approaches with different types of organic, inorganic, and hybrid nanomaterials have been proposed to devise novel detection methods for food pathogens. Among these, metal nanoparticles with surface plasmonic properties, semiconducting nanoparticles with photo-luminescence properties, and their hybrids with different polymeric systems have shown popularity in the design of point-of-care testing (POCT)–based food biosensors, and this is the focus of our current review. This review is majorly divided into two sections; the first one is based on the various approaches as quick detection schemes using different types of nanoparticles and their hybrids. Here, we discuss the properties of different types of plasmonic, semiconducting nanoparticles and how these properties have been used to devise the scheme for rapid detection methods. The second part of the review discusses the use of different receptors on bacterial surfaces enabling quick identification. This includes advantages and disadvantages of different types of receptors such as synthetic antibodies, tailspike proteins, and lectins that have been conjugated onto nanoparticles for binding onto targeted pathogens in the detection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. H. Gourama, in Food Engineering Series. Foodborne Pathogens, (Springer, 2020) pp. 25–49. https://doi.org/10.1007/978-3-030-42660-6_2

  2. T. Bintsis, Microbial pollution and food safety. AIMS Microbiol. 4(3), 377 (2018)

    Article  Google Scholar 

  3. World Health Organization, WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. (World Health Organization, Geneva, Switzerland, ‎2015). https://apps.who.int/iris/handle/10665/199350

  4. S.M. Pires et al., Burden of foodborne diseases: think global, act local. Curr. Opin. Food Sci. 39, 152–159 (2021)

    Article  Google Scholar 

  5. X. Zhang et al., Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends Anal. Chem. 121, 115668 (2019)

    Article  CAS  Google Scholar 

  6. E. Abebe, G. Gugsa, M. Ahmed, Review on major food-borne zoonotic bacterial pathogens. J. Trop. M. 2020, 1–19 (2020). https://doi.org/10.1155/2020/4674235

  7. M. Marin, M.V. Nikolic, J. Vidic, Rapid point-of-need detection of bacteria and their toxins in food using gold nanoparticles. Compr. Rev. Food Sci. Food Saf. 20(6), 5880–5900 (2021)

    Article  CAS  Google Scholar 

  8. W. Hussain, M.W. Ullah, U. Farooq, A. Aziz, S. Wang, Bacteriophage-based advanced bacterial detection: concept, mechanisms, and applications. Biosens. Bioelectron. 177, 112973 (2021)

    Article  CAS  Google Scholar 

  9. V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, C. Adley, An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 28(2), 232–254 (2010)

    Article  CAS  Google Scholar 

  10. D.S.P. Silva, T. Canato, M. Magnani, J. Alves, E.Y. Hirooka, T.C.R.M. de Oliveira, Multiplex PCR for the simultaneous detection of Salmonella spp. and Salmonella Enteritidis in food. Int. J. food Sci. Technol. 46(7), 1502–1507 (2011)

    Article  CAS  Google Scholar 

  11. J. Chen, L. Zhang, G.C. Paoli, C. Shi, S.-I. Tu, X. Shi, A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int. J. Food Microbiol. 137(2–3), 168–174 (2010)

    Article  CAS  Google Scholar 

  12. D.H. D’souza, L. Jaykus, Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods. J. Appl. Microbiol. 95(6), 1343–1350 (2003)

    Article  Google Scholar 

  13. L. Wang, L. Shi, J. Su, Y. Ye, Q. Zhong, Detection of Vibrio parahaemolyticus in food samples using in situ loop-mediated isothermal amplification method. Gene 515(2), 421–425 (2013)

    Article  CAS  Google Scholar 

  14. N. Singhal, M. Kumar, P.K. Kanaujia, J.S. Virdi, MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6, 791 (2015)

    Article  Google Scholar 

  15. Y. Wang, E.C. Alocilja, Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J. Biol. Eng. 9(1), 1–7 (2015)

    Article  Google Scholar 

  16. L.-L. Tay et al., Silica encapsulated SERS nanoprobe conjugated to the bacteriophage tailspike protein for targeted detection of Salmonella. Chem. Commun. 48(7), 1024–1026 (2012)

    Article  CAS  Google Scholar 

  17. C. Park, J. Lee, Y. Kim, J. Kim, J. Lee, S. Park, 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles. J. Microbiol. Methods 132, 128–133 (2017)

    Article  CAS  Google Scholar 

  18. J. Chen, S.D. Alcaine, Z. Jiang, V.M. Rotello, S.R. Nugen, Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe. Anal. Chem. 87(17), 8977–8984 (2015)

    Article  CAS  Google Scholar 

  19. A. Abbaspour, F. Norouz-Sarvestani, A. Noori, N. Soltani, Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens. Bioelectron. 68, 149–155 (2015)

    Article  CAS  Google Scholar 

  20. M. Imai et al., Dark-field microscopic detection of bacteria using bacteriophage-immobilized SiO2@ AuNP core–shell nanoparticles. Anal. Chem. 91(19), 12352–12357 (2019)

    Article  CAS  Google Scholar 

  21. Y.-L. Bai, M. Shahed-Al-Mahmud, K. Selvaprakash, N.-T. Lin, Y.-C. Chen, Tail fiber protein-immobilized magnetic nanoparticle-based affinity approaches for detection of acinetobacter baumannii. Anal. Chem. 91(15), 10335–10342 (2019)

    Article  CAS  Google Scholar 

  22. Y. Lin, A.T. Hamme II., Targeted highly sensitive detection/eradication of multi-drug resistant Salmonella DT104 through gold nanoparticle–SWCNT bioconjugated nanohybrids. Analyst 139(15), 3702–3705 (2014)

    Article  CAS  Google Scholar 

  23. N. Duan, S. Wu, S. Dai, T. Miao, J. Chen, Z. Wang, Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim. Acta 182(5–6), 917–923 (2015)

    Article  CAS  Google Scholar 

  24. G. Sai-Anand et al., Recent progress on the sensing of pathogenic bacteria using advanced nanostructures. Bull. Chem. Soc. Jpn. 92(1), 216–244 (2019)

    Article  CAS  Google Scholar 

  25. H. Ding, Y. Ma, Computational approaches to cell–nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. Nanoscale Horizons 3(1), 6–27 (2018)

    Article  CAS  Google Scholar 

  26. X. Huang, M.A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1(1), 13–28 (2010)

    Article  Google Scholar 

  27. S. Mukherji et al., Synthesis and characterization of size- and shape-controlled silver nanoparticles. Phys. Sci. Rev. 4(1), 20170082 (2018). https://doi.org/10.1515/psr-2017-0082

  28. J. Belza, A. Opletalová, K. Poláková, Carbon dots for virus detection and therapy. Microchim. Acta 188(12), 1–23 (2021)

    Article  Google Scholar 

  29. F.L. Nobrega et al., Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 16(12), 760–773 (2018)

    Article  CAS  Google Scholar 

  30. S. Hameed, L. Xie, Y. Ying, Conventional and emerging detection techniques for pathogenic bacteria in food science: a review. Trends Food Sci. Technol. 81, 61–73 (2018)

    Article  CAS  Google Scholar 

  31. P. Wang, D. Tanaka, S. Ryuzaki, S. Araki, K. Okamoto, K. Tamada, Silver nanoparticles with tunable work functions. Appl. Phys. Lett. 107(15), 151601 (2015)

    Article  Google Scholar 

  32. A.A. Yaqoob et al., Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front. Chem. 8, 341 (2020)

    Article  CAS  Google Scholar 

  33. H. Katas et al. Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. J. Nanotechnol. 2018, 1–13 (2018). https://doi.org/10.1155/2018/4290705

  34. H.-S. Kim et al., Two-stage label-free aptasensing platform for rapid detection of Cronobacter sakazakii in powdered infant formula. Sensors Actuators B Chem. 239, 94–99 (2017)

    Article  CAS  Google Scholar 

  35. Y.-J. Kim, H.-S. Kim, J.-W. Chon, D.-H. Kim, J.-Y. Hyeon, K.-H. Seo, New colorimetric aptasensor for rapid on-site detection of Campylobacter jejuni and Campylobacter coli in chicken carcass samples. Anal. Chim. Acta 1029, 78–85 (2018)

    Article  CAS  Google Scholar 

  36. X. Xia, S.M. Mugo, Q. Zhang, Responsive microgels-based wearable devices for sensing multiple health signals. Chem Eng J 427, 130903 (2022). https://doi.org/10.1016/j.cej.2021.130903

    Article  CAS  Google Scholar 

  37. Y. Xiao, J. Du, Superparamagnetic nanoparticles for biomedical applications. J. Mater. Chem. B 8(3), 354–367 (2020)

    Article  CAS  Google Scholar 

  38. Z. Zhou, L. Yang, J. Gao, X. Chen, Structure–relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv. Mater. 31(8), 1804567 (2019)

    Article  Google Scholar 

  39. O. Prakash, S. Sil, T. Verma, S. Umapathy, Direct detection of bacteria using positively charged Ag/Au bimetallic nanoparticles: a label-free surface-enhanced Raman scattering study coupled with multivariate analysis. J. Phys. Chem. C 124(1), 861–869 (2019)

    Article  Google Scholar 

  40. M. Türk, C. Erkey, Synthesis of supported nanoparticles in supercritical fluids by supercritical fluid reactive deposition: current state, further perspectives and needs. J. Supercrit. Fluids 134, 176–183 (2018)

    Article  Google Scholar 

  41. A. Ali, M.Z. Hira Zafar, I. ulHaq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl 9, 49 (2016)

    Article  CAS  Google Scholar 

  42. A.P. Tiwari, S.S. Rohiwal, Synthesis and bioconjugation of hybrid nanostructures for biomedical applications. Hybrid Nanostruct. Cancer Theranostics 17–41 (2019). https://doi.org/10.1016/b978-0-12-813906-6.00002-0

  43. I. Khan, A. Abdalla, A. Qurashi, Synthesis of hierarchical WO3 and Bi2O3/WO3 nanocomposite for solar-driven water splitting applications. Int. J. Hydrogen Energy 42(5), 3431–3439 (2017)

    Article  CAS  Google Scholar 

  44. N. Kazemifard, A.A. Ensafi, Z.S. Dehkordi, A review of the incorporation of QDs and imprinting technology in optical sensors–imprinting methods and sensing responses. New J. Chem. 45(23), 10170–10198 (2021)

    Article  CAS  Google Scholar 

  45. P. Liu et al., Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 31(11), 2008453 (2021)

    Article  CAS  Google Scholar 

  46. A.L. Efros, L.E. Brus, Nanocrystal quantum dots: from discovery to modern development. ACS Nano 15(4), 6192–6210 (2021)

    Article  CAS  Google Scholar 

  47. M. Bhattacharya et al., in Biosensors in food safety and quality. Nanobiosensors: principles, techniques, and innovation in nanobiosensors, (CRC Press, 2022) pp. 85–110. https://doi.org/10.1201/9780429259890-7

  48. B.G. Jeong et al., Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 21(2), 246–252 (2022)

    Article  CAS  Google Scholar 

  49. G. Kedarnath, in Handbook on synthesis strategies for advanced materials. Synthesis of advanced inorganic materials through molecular precursors, (Springer, Singapore, 2021), pp. 467–501. https://doi.org/10.1007/978-981-16-1807-9_15

  50. X. Gao, S. Nie, Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol. 21(9), 371–373 (2003)

    Article  CAS  Google Scholar 

  51. S. Joshi et al., A review on peptide functionalized graphene derivatives as nanotools for biosensing. Microchim. Acta 187(1), 1–15 (2020)

    Article  Google Scholar 

  52. D.C.F. Soares, S.C. Domingues, D.B. Viana, M.L. Tebaldi, Polymer-hybrid nanoparticles: current advances in biomedical applications. Biomed. Pharmacother. 131, 110695 (2020)

    Article  Google Scholar 

  53. M. Manoswini, D. Bhattacharya, P. Sen, N. Ganguly, P.S. Mohanty, Antibacterial and cytotoxic activity of polymer-metal hybrid nanoparticle. Adv. Nat. Sci. Nanosci. Nanotechnol. 12(2), 025003 (2021)

    Article  CAS  Google Scholar 

  54. A. Bordat, T. Boissenot, J. Nicolas, N. Tsapis, Thermoresponsive polymer nanocarriers for biomedical applications. Adv. Drug Deliv. Rev. 138, 167–192 (2019)

    Article  CAS  Google Scholar 

  55. M. Sponchioni, U.C. Palmiero, D. Moscatelli, Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C 102, 589–605 (2019)

    Article  CAS  Google Scholar 

  56. B. Mutharani, P. Ranganathan, S.-M. Chen, Stimuli-enabled reversible switched aclonifen electrochemical sensor based on smart PNIPAM/PANI-Cu hybrid conducting microgel. Sensors Actuators B Chem. 304, 127232 (2020)

    Article  CAS  Google Scholar 

  57. P. Bhol, M. Mohanty, P.S. Mohanty, Polymer-matrix stabilized metal nanoparticles: aynthesis, characterizations and insight into molecular interactions between metal ions, atoms and polymer moieties. J. Mol. Liq. 325, 115135 (2021)

    Article  CAS  Google Scholar 

  58. A. De Backer, L. Jones, A. Varambhia, P.D. Nellist, S. Van Aert, Measuring dynamic structural changes of nanoparticles at the atomic scale using scanning transmission electron microscopy. Phys. Rev. Lett. 124(10), 106105 (2020)

    Article  Google Scholar 

  59. D. Ma, in Noble metal-metal oxide hybrid nanoparticles. Hybrid nanoparticles, (Elsevier Inc., 2019), pp. 3–6. https://doi.org/10.1016/b978-0-12-814134-2.00001-2

  60. J. Zhou, L. Rao, G. Yu, T.R. Cook, X. Chen, F. Huang, Supramolecular cancer nanotheranostics. Chem. Soc. Rev. 50(4), 2839–2891 (2021)

    Article  CAS  Google Scholar 

  61. R.-V. Kalaydina, K. Bajwa, B. Qorri, A. Decarlo, M.R. Szewczuk, Recent advances in ‘smart’ delivery systems for extended drug release in cancer therapy. Int. J. Nanomedicine 13, 4727 (2018)

    Article  CAS  Google Scholar 

  62. M.A. Wahab, E.Y. Erdem, Multi-step microfludic reactor for the synthesis of hybrid nanoparticles. J. Micromechanics Microengineering 30(8), 85006 (2020)

    Article  Google Scholar 

  63. T. Shu et al., Multi-responsive micro/nanogels for optical sensing. Adv. Phys. X 7(1), 2043185 (2022)

    Google Scholar 

  64. N. Duan et al., A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels. Anal. Chim. Acta 804, 151–158 (2013)

    Article  CAS  Google Scholar 

  65. J. Hu et al., Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for Salmonella detection. Anal. Chem. 91(1), 1178–1184 (2018)

    Article  Google Scholar 

  66. E. Mohamadi, M. Moghaddasi, A. Farahbakhsh, A. Kazemi, A quantum-dot-based fluoroassay for detection of food-borne pathogens. J. Photochem. Photobiol. B Biol. 174, 291–297 (2017)

    Article  CAS  Google Scholar 

  67. K. Yamada, W. Choi, I. Lee, B.-K. Cho, S. Jun, Rapid detection of multiple foodborne pathogens using a nanoparticle-functionalized multi-junction biosensor. Biosens. Bioelectron. 77, 137–143 (2016)

    Article  CAS  Google Scholar 

  68. S. Wu, Y. Wang, N. Duan, H. Ma, Z. Wang, Colorimetric aptasensor based on enzyme for the detection of Vibrio parahemolyticus. J. Agric. Food Chem. 63(35), 7849–7854 (2015)

    Article  CAS  Google Scholar 

  69. J. Zhang, L. Mou, X. Jiang, Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. 11(4), 923–936 (2020)

    Article  CAS  Google Scholar 

  70. X. Han, K. Xu, O. Taratula, K. Farsad, Applications of nanoparticles in biomedical imaging. Nanoscale 11(3), 799–819 (2019)

    Article  CAS  Google Scholar 

  71. C.I. Colino, J.M. Lanao, C. Gutierrez-Millan, Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. Mater. Sci. Eng. C. 121, 111843 (2021). https://doi.org/10.1016/j.msec.2020.111843

  72. S. Singh, V. Kumar, D.S. Dhanjal, S. Datta, R. Prasad, J. Singh, in Microbial biotechnology: basic research and applications. Environmental and microbial biotechnology, eds., J. Singh, A. Vyas, S. Wang, R. Prasad. Biological biosensors for monitoring and diagnosis, (Springer, Singapore, 2020). https://doi.org/10.1007/978-981-15-2817-0_14

  73. T. Ozer, B.J. Geiss, C.S. Henry, Chemical and biological sensors for viral detection. J. Electrochem. Soc. 167(3), 37523 (2019)

    Article  Google Scholar 

  74. P. D’Orazio, Biosensors in clinical chemistry. Clin. Chim. acta 334(1–2), 41–69 (2003)

    Article  Google Scholar 

  75. R. Zhang, T. Belwal, L. Li, X. Lin, Y. Xu, Z. Luo, Nanomaterial-based biosensors for sensing key foodborne pathogens: advances from recent decades. Compr. Rev. Food Sci. Food Saf. 19(4), 1465–1487 (2020)

    Article  Google Scholar 

  76. T. Vo-Dinh, B. Cullum, Biosensors and biochips: advances in biological and medical diagnostics. Fresenius. J. Anal. Chem. 366(6), 540–551 (2000)

    Article  CAS  Google Scholar 

  77. S. Ko, T.J. Park, H.-S. Kim, J.-H. Kim, Y.-J. Cho, Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors. Biosens. Bioelectron. 24(8), 2592–2597 (2009)

    Article  CAS  Google Scholar 

  78. N. Verdoodt, C.R. Basso, B.F. Rossi, V.A. Pedrosa, Development of a rapid and sensitive immunosensor for the detection of bacteria. Food Chem. 221, 1792–1796 (2017)

    Article  CAS  Google Scholar 

  79. Y. Wang, Z. Ye, Y. Ying, New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors 12(3), 3449–3471 (2012)

    Article  Google Scholar 

  80. K.J. Lee et al., Simple and rapid detection of bacteria using a nuclease-responsive DNA probe. Analyst 143(1), 332–338 (2018)

    Article  CAS  Google Scholar 

  81. A. Singh, D. Arutyunov, C.M. Szymanski, S. Evoy, Bacteriophage based probes for pathogen detection. Analyst 137(15), 3405–3421 (2012)

    Article  CAS  Google Scholar 

  82. H. Peng, I.A. Chen, Rapid colorimetric detection of bacterial species through the capture of gold nanoparticles by chimeric phages. ACS Nano 13(2), 1244–1252 (2018)

    Google Scholar 

  83. Z. AliakbarAhovan, A. Hashemi, L.M. De Plano, M. Gholipourmalekabadi, A. Seifalian, Bacteriophage based biosensors: trends, outcomes and challenges. Nanomater 10(3), 501 (2020)

    Article  Google Scholar 

  84. A. Singh, D. Arutyunov, M.T. McDermott, C.M. Szymanski, S. Evoy, Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst 136(22), 4780–4786 (2011)

    Article  CAS  Google Scholar 

  85. A. Singh et al., Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosens. Bioelectron. 26(1), 131–138 (2010)

    Article  CAS  Google Scholar 

  86. S. Poshtiban, A. Singh, G. Fitzpatrick, S. Evoy, Bacteriophage tail-spike protein derivitized microresonator arrays for specific detection of pathogenic bacteria. Sensors Actuators B Chem. 181, 410–416 (2013)

    Article  CAS  Google Scholar 

  87. E. Nakata, S. Nakano, A. Rajendran, and T. Morii, “Covalent bond formation by modular adaptors to locate multiple enzymes on a DNA scaffold,” in Kinetic Control in Synthesis and Self-Assembly, Elsevier, 2019, pp. 163–183.

  88. N. Wongkaew, M. Simsek, C. Griesche, A.J. Baeumner, Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem. Rev. 119(1), 120–194 (2018)

    Article  Google Scholar 

  89. M.S. Draz, H. Shafiee, Applications of gold nanoparticles in virus detection. Theranostics 8(7), 1985 (2018)

    Article  CAS  Google Scholar 

  90. S. Kumar, J. Aaron, K. Sokolov, Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 3(2), 314–320 (2008)

    Article  CAS  Google Scholar 

  91. G.T. Hermanson, in Bioconjugate techniques. Isotopic labeling techniques, (Elsevier, 2013), pp. 507–534. https://doi.org/10.1016/b978-0-12-382239-0.00012-1

  92. L. Zhang, Y. Mazouzi, M. Salmain, B. Liedberg, S. Boujday, Antibody-gold nanoparticle bioconjugates for biosensors: synthesis, characterization and selected applications. Biosens. Bioelectron. 165, 112370 (2020)

    Article  CAS  Google Scholar 

  93. J.H.T. Luong, S.K. Vashist, Chemistry of biotin–streptavidin and the growing concern of an emerging biotin interference in clinical immunoassays. ACS Omega 5(1), 10–18 (2019)

    Article  Google Scholar 

  94. J. Conde, J.T. Dias, V. Grazú, M. Moros, P.V. Baptista, J.M. de la Fuente, Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2, 48 (2014)

    Article  Google Scholar 

  95. J. Chen, S.M. Andler, J.M. Goddard, S.R. Nugen, V.M. Rotello, Integrating recognition elements with nanomaterials for bacteria sensing. Chem. Soc. Rev. 46(5), 1272–1283 (2017)

    Article  CAS  Google Scholar 

  96. I. Gessner, I. Neundorf, Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int. J. Mol. Sci. 21(7), 2536 (2020)

    Article  CAS  Google Scholar 

  97. A. Heuer-Jungemann et al., The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 119(8), 4819–4880 (2019)

    Article  CAS  Google Scholar 

  98. L. Guerrini, R.A. Alvarez-Puebla, N. Pazos-Perez, Surface modifications of nanoparticles for stability in biological fluids. Mater (Basel) 11(7), 1154 (2018)

    Article  Google Scholar 

  99. G. Sanità, B. Carrese, A. Lamberti, Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci. 7, 587012 (2020). https://doi.org/10.3389/fmolb.2020.587012

  100. M. Bilal, H.M.N. Iqbal, Chemical, physical, and biological coordination: an interplay between materials and enzymes as potential platforms for immobilization. Coord. Chem. Rev. 388, 1–23 (2019)

    Article  CAS  Google Scholar 

  101. G.R. Rudramurthy, M.K. Swamy, Potential applications of engineered nanoparticles in medicine and biology: An update. JBIC J. Biol. Inorg. Chem. 23(8), 1185–1204 (2018)

    Article  CAS  Google Scholar 

  102. K. Kalimuthu et al., Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. J. Nanobiotechnol 16(1), 1–13 (2018)

    Article  Google Scholar 

  103. S.J. Amina, B. Guo, A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomedicine 15, 9823 (2020)

    Article  CAS  Google Scholar 

  104. C.M. Goodman, et al. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 15(4), 897–900 (2004). https://doi.org/10.1021/bc049951i

  105. Z.U.H. Khan et al., Biomedical applications of green synthesized Nobel metal nanoparticles. J. Photochem. Photobiol. B Biol. 173, 150–164 (2017)

    Article  Google Scholar 

  106. B. Nasseri, N. Soleimani, N. Rabiee, A. Kalbasi, M. Karimi, M.R. Hamblin, Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 117, 112–128 (2018)

    Article  CAS  Google Scholar 

  107. M. Kotepui, K.U. Kotepui, G. De Jesus Milanez, F.R. Masangkay, Summary of discordant results between rapid diagnosis tests, microscopy, and polymerase chain reaction for detecting Plasmodium mixed infection: a systematic review and meta-analysis. Sci. Rep 10(1), 1–17 (2020)

    Article  Google Scholar 

  108. S. Li, Z. Ma, Z. Cao, L. Pan, Y. Shi, Advanced wearable microfluidic sensors for healthcare monitoring. Small 16(9), 1903822 (2020)

    Article  CAS  Google Scholar 

  109. A.I. Akinyemi, A.F. Fagbamigbe, E. Omoluabi, O.M. Agunbiade, S.O. Adebayo, Diarrhoea management practices and child health outcomes in Nigeria: sub-national analysis. Adv. Integr. Med. 5(1), 15–22 (2018)

    Article  Google Scholar 

  110. D.M. Anderson, D.I. Rees, T. Wang, The phenomenon of summer diarrhea and its waning, 1910–1930. Explor. Econ. Hist. 78, 101341 (2020)

    Article  Google Scholar 

  111. A. Kamath, K. Shetty, B. Unnikrishnan, S. Kaushik, S.N. Rai, Prevalence, patterns, and predictors of diarrhea: a spatial-temporal comprehensive evaluation in India. BMC Public Health 18(1), 1–10 (2018)

    Google Scholar 

  112. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931 (2019)

    Article  CAS  Google Scholar 

  113. S. Förster, M. Konrad, From self-organizing polymers to nano-and biomaterials. J. Mater. Chem. 13(11), 2671–2688 (2003)

    Article  Google Scholar 

  114. M. Zakharzhevskii, A.S. Drozdov, D.S. Kolchanov, L. Shkodenko, V.V. Vinogradov, Test-system for bacteria sensing based on peroxidase-like activity of inkjet-printed magnetite nanoparticles. Nanomater 10(2), 313 (2020)

    Article  CAS  Google Scholar 

  115. R. Torensma, M.J. Visser, C.J. Aarsman, M.J. Poppelier, A.C. Fluit, J. Verhoef, Monoclonal antibodies that react with live Listeria spp. Appl. Environ. Microbiol. 59(8), 2713–2716 (1993)

    Article  CAS  Google Scholar 

  116. H.R. Hoogenboom, Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23, 1105–1116 (2005)

    Article  CAS  Google Scholar 

  117. N. Zambrano et al., High-throughput monoclonal antibody discovery from phage libraries: challenging the current preclinical pipeline to keep the pace with the increasing mAb demand. Cancers (Basel) 14(5), 1325 (2022)

    Article  CAS  Google Scholar 

  118. E. Stone, K. Campbell, I. Grant, O. McAuliffe, Understanding and exploiting phage–host interactions. Viruses 11(6), 567 (2019)

    Article  CAS  Google Scholar 

  119. A. Freiberg et al., The tailspike protein of Shigella phage Sf6: a structural homolog of Salmonella phage P22 tailspike protein without sequence similarity in the β-helix domain. J. Biol. Chem. 278(3), 1542–1548 (2003)

    Article  CAS  Google Scholar 

Download references

Funding

This work is partially supported by BIRAC, COE, DBT, Govt. of India and ICMR (Indian Council of Medical Research), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

PSM designed the studies, supervise, and formulate the work plan of review and its revision, writing, and corrections. BRS provided valuable suggestions and idea to improve the review, writing, editing, and corrections. MM: original draft preparation, writing, editing, and referencing. AGM and BP contribute significantly to the writing, editing, and referencing of the section on the use of nanomaterials for the detection of food pathogens.

Corresponding authors

Correspondence to Bikash R. Sahu or Priti Sundar Mohanty.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoswini, M., Majumdar, A.G., Pany, B. et al. Rapid detections of food pathogens using metal, semiconducting nanoparticles, and their hybrids: a review. emergent mater. 6, 15–30 (2023). https://doi.org/10.1007/s42247-022-00441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00441-4

Keywords

Navigation