Skip to main content
Log in

Theoretical investigation of structural, electronic, elastic, magnetic, thermodynamic, and thermoelectric properties of Ru2MnNb Heusler alloy: FP-LMTO method

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This study investigates the structural stability, electronic, elastic, magnetic, thermodynamic, and thermoelectric properties of Ru2MnNb alloy by employing first-principles calculations based on the density functional theory (DFT). Using the generalized gradient approximation (GGA), it is found that the Ru2MnNb alloy is stable in the ferromagnetic (FM) state of Cu2MnAl type structure. The electronic results indicate that Ru2MnNb is a metal and has a conductive character; its magnetic moment is found to be 4.13 (μB). It is also found to be elastically stable and ductile. The thermodynamic properties of Ru2MnNb, such as volume variation (V), compressibility modulus (B), Debye temperature, thermal expansion (흰), specific capacity (Cp), and thermal capacity (Cv), are obtained by quasi-harmonic Debye model. At the end, the dependence of Seebeck coefficient (S), power factor, and figure of merit (ZT) on the Fermi level are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, D.M. Treger, Spintronics: A Spin-Based Electronics Vision for the Future. Science 294, 1488–1495 (2001)

    Article  CAS  Google Scholar 

  2. M.-W. Lu et al., Calculations of spin-polarized Goos–Hänchen displacement in magnetically confined GaAs/AlxGa1−xAs nanostructure modulated by spin–orbit couplings. J. Phys. Condens. Matter 30, 14 (2018)

    Google Scholar 

  3. I. Galanakis, P.H. Dederichs, eds. 676 (Springer, Berlin, 2005)

    Google Scholar 

  4. Caretta, Lucas Marcelo. Chiral spin textures and dynamics in multi-sublattice magnetic materials. Diss. Massachusetts Institute of Technology, (2019)

  5. H. Benaissa et al., Ferromagnetism in RaBi with zinc-blende and wurtzite structures: ab-initio prediction. Spin. 8, 02 (2018)

    Article  Google Scholar 

  6. M. Benkabou, H. Rached, A. Abdellaoui, D. Rached, R. Khenata, M.H. Elahmar, et al., J. Alloys Compd. 647, 276–286 (2015)

    Article  CAS  Google Scholar 

  7. A.O. Oliynyk, E. Antono, T.D. Sparks, L. Ghadbeigi, M.W. Gaultois, B. Meredig, A. Mar, Chem. Mater. 28, 7324–7331 (2016)

    Article  CAS  Google Scholar 

  8. S.E. Kulkova, S.V. Eremeev, T. Kakeshita, S.S. Kulkov, G.E. Rudenski, The Electronic Structure and Magnetic Properties of Full- and Half-Heusler Alloys. Mater. Trans. 47, 599–606 (2006)

    Article  CAS  Google Scholar 

  9. F. Heusler, Verh. d. DPG 5, 219 (1903)

    CAS  Google Scholar 

  10. V. Kumar, M. Reehuis, A. Hoser, P. Adler, C. Felser, Crystal and magnetic structure of antiferromagnetic Mn2PtPd. J PhysCondens Matter 30, 265803 (2018)

    Article  Google Scholar 

  11. F. Dahmane, D. Mesri, A. Tadjer, R. Khenata, S. Benalia, L. Djoudi, H. Aourag, Electronic structure, magnetism and stability of Co2CrX (X =Al, Ga, In)ab initiostudy. Modern Physics Letters B 30, 1550265 (2016)

    Article  CAS  Google Scholar 

  12. K. Manna, L. Muechler, T.H. Kao, R. Stinshoff, Y. Zhang, J. Gooth, J. Kübler, From Colossal to Zero: Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design. Physical Review X 8, 041045 (2018)

    Article  CAS  Google Scholar 

  13. Y. Li, G.D. Liu, X.T. Wang, E.K. Liu, X.K. Xi, W.H. Wang, G.H. Wu, L.Y. Wang, X.F. Dai, First-principles study on electronic structure, magnetism and half-metallicity of the NbCoCrAl and NbRhCrAl compounds. Results Phys. 7(2248), 2248–2254 (2017)

    Article  Google Scholar 

  14. S. Sanvito, C. Oses, J. Xue, A. Tiwari, M. Zic, T. Archer, P. Tozman, M. Venkatesan, M. Coey, S. Curtarolo, Accelerated discovery of new magnets in the Heusler alloy family. Sci. Adv. 3, e1602241 (2017)

    Article  Google Scholar 

  15. Ş.U.L.E. Uğur, M. Güler, G.Ö.K.A.Y. Uğur, E. Güler, J. Magn. Magn. Mater. 63, 167614 (2020)

    Google Scholar 

  16. S.Y. Savrasov, D. Savrasov, Full-potential linear-muffin-tin-orbital method for calculating total energies and forces. Phys.Rev. B 46, 12181–12195 (1992)

    Article  CAS  Google Scholar 

  17. S.Y. Savrasov, Linear-response theory and lattice dynamics: A muffin-tin-orbital approach. Phys. Rev. B 54, 16470–16486 (1996)

    Article  CAS  Google Scholar 

  18. For a rieview, “see Théorie of the Inhomogeneous Electron Gas” (eds. Lunqvist, S. and March, S.H.) Plenum, New York, (1983).

  19. J.P. Perdew, Y. Wang, Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys Rev B 46, 12947–12954 (1992)

  20. F.D. Murnaghan, the compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U. S. A. 30, 244–247 (1944)

    Article  CAS  Google Scholar 

  21. A.H. Reshak, Spin-polarized second harmonic generation from the antiferromagnetic CaCoSO single crystal. Sci. Rep. 13, 46415 (2017)

    Article  Google Scholar 

  22. A.H. Reshak, Ab initio study of TaON, an active photocatalyst under visible light irradiation. Phys. Chem. Chem. Phys. 16, 22 (2014)

    Article  Google Scholar 

  23. G.E. Davydyuk et al., Photoelectrical properties and the electronic structure of Tl 1−xIn1−xSnxSe2 (x=0,0.1,0.2,0.25) single crystalline alloys. Phys. Chem. Chem. Phys. 15, 18 (2013)

    Article  Google Scholar 

  24. A.H. Reshak et al., Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag0.5Pb1.75Ge(S1−xSex)4: experiment and theory. Phys. Chem. Chem. Phys. 15, 43 (2013)

    Article  Google Scholar 

  25. A.H. Reshak et al., Dispersion of linear and nonlinear optical susceptibilities and the hyperpolarizability of 3-methyl-4-phenyl-5-(2-pyridyl)-1, 2, 4-triazole. Phys. Chem. Chem. Phys. 13(7), 2945–2952 (2011)

    Article  CAS  Google Scholar 

  26. A.H. Reshak, Specific features of electronic structures and optical susceptibilities of molybdenum oxide. RSC Adv. 5, 28 (2015)

    Google Scholar 

  27. Reshak, Ali H. "Thermoelectric properties for AA-and AB-stacking of a carbon nitride polymorph (C 3 N 4)." RSC advances 4, 108 (2014)

  28. S. Talakesh, Investigation of structural, electronic and thermodynamic properties of LaRuSi nano-layer using density functional theory. Iran J Appl Phys 10(1) (2020)

  29. G. Xing et al., Thermoelectric properties of p-type cubic and rhombohedral GeTe. J. Appl. Phys. 123, 19 (2018)

    Google Scholar 

  30. X. Yang et al., First-principles prediction of two hexagonal silicon crystals as potential absorbing layer materials for solar-cell application. J. Appl. Phys. 124, 16 (2018)

    Google Scholar 

  31. J. Ballato, A. Ballato, Deduced elasticity of sp3-bonded amorphous diamond. Appl. Phys. Lett. 111, 22 (2017)

    Article  Google Scholar 

  32. H. Niu, S. Niu, A.R. Oganov, Simple and accurate model of fracture toughness of solids. J. Appl. Phys. 125(6), 065105 (2019)

    Article  Google Scholar 

  33. M.A. Ghebouli et al., Prediction study of structural, elastic, electronic, optical and thermodynamic properties of cubic Perovskite Bigao3. Sci. Rep. (2021) in press

  34. J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 654 (2001)

    Article  Google Scholar 

  35. M.N. Islam, M.A. Hadi, J. Podder, Influence of Ni doping in a lead-halide and a lead-free halide perovskites for optoelectronic applications. AIP Adv. 9, 12 (2019)

    Google Scholar 

  36. A. Baida, M. Ghezali, Structural, electronic and optical properties of InP under pressure: an ab-initio study. Comput Condens Matter 17, e00333 (2018)

    Article  Google Scholar 

  37. M. Flrez, J.M. Recio, E. Francisco, M.A. Blanco, A. Martin, Pends. Phys. Rev. B 66, 144112 (2002)

    Article  Google Scholar 

  38. S.W. Lovesey, G. van der Laan, Magnetic multipoles and correlation shortage in the pyrochlore cerium stannate Ce2Sn2O7. Phys. Rev. B 101, 14 (2020)

    Article  Google Scholar 

  39. A. Debye, Phys 39, 789 (1912)

    CAS  Google Scholar 

  40. Z.-H. Ge, G.S. Nolas, Purification and crystal growth of single-crystalline tellurium tubes and rods. Mater. Lett. 194(20), 20–22 (2017)

    Article  CAS  Google Scholar 

  41. L. Jodin, J. Tobola, P. Pecheur, H. Scherrer, S. Kaprzyk, Effect of substitutions and defects in half-HeuslerFeVSbstudied by electron transport measurements and KKR-CPA electronic structure calculations. Phys. Rev. B 70, 184207 (2004)

    Article  Google Scholar 

  42. C.G. Fu, T.J. Zhu, Y.T. Liu, H.H. Xie, X.B. Zhao, Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy Environ. Sci. 8, 216–220 (2015)

    Article  CAS  Google Scholar 

  43. T.M. Bhat, D.C. Gupta, Analysis of electronic, thermal, and thermoelectric properties of the half-Heusler CrTiSi material using density functional theory. J. Phys. Chem. Solids 119, 281–287 (2018)

    Article  CAS  Google Scholar 

  44. M. Mikami, in Thermoelectric Energy Conversion. Power generation performance of Heusler Fe2VAl modules (Woodhead Publishing, 2021), pp. 493–502

  45. C.W. Tseng et al., Semimetallic behavior in Heusler-type Ru2 TaAl and thermoelectric performance improved by off-stoichiometry. Phys. Rev. B 96, 12 (2017)

    Google Scholar 

  46. M. Sun et al., Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets. APL Mater 6, 3 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Al-Douri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GAID, F.O., BOUFADI, F.Z., Tayebi, N. et al. Theoretical investigation of structural, electronic, elastic, magnetic, thermodynamic, and thermoelectric properties of Ru2MnNb Heusler alloy: FP-LMTO method. emergent mater. 5, 1065–1073 (2022). https://doi.org/10.1007/s42247-021-00229-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00229-y

Keywords

Navigation