Skip to main content

Advertisement

Log in

Investigation of structural, elastic, electronic, and magnetic proprieties for X2LuSb (X = Mn and Ir) full-Heusler alloys

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

A study on the structural, elastic, electronic, and magnetic properties of full-Heusler X2LuSb (X = Mn and Ir) compounds by using the first principle calculations within generalized gradient approximation Perdew, Burke, and Ernzerhof GGA-PBE for electron exchange and correlation is reported. The GGA + U approximation is utilised to determine the effect of the Hubbard correction on the magnetic and electronic properties. According to the results obtained for the structural properties, our compounds are stable in the regular structure and ferromagnetic states. The elastic properties have shown the conformity of elastic constants with the stability criteria and the ductile nature of the compounds. This mechanical stability is preserved over the interval, 0–50 GPa. The using of GGA and GGA + U approximations has shown the effect of Hubbard correction applied to the two atoms Mn and Ir on the variation of their magnetic moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Manna K., Muechler L., Kao T. H., Stinshoff R., Zhang Y., Gooth J., Felser C. (2018). From colossal to zero: controlling the anomalous hall effect in magnetic Heusler compounds via berry curvature design. Physical Review X, 8(4). https://doi.org/10.1103/physrevx.8.041045

  2. Noky J., Zhang Y., Gooth J., Felser C., Sun Y. (2020). Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds. Npj Computational Materials, 6(1). https://doi.org/10.1038/s.41524.020.0342.5

  3. F. Serrano-Sánchez, T. Luo, J. Yu, W. Xie, C. Le, G.F.C. Auffermann, Thermoelectric properties of n-type half-Heusler NbCoSn with heavy-element Pt substitution. Journal of Materials Chemistry A (2020). https://doi.org/10.1039/d.0ta04644b

    Article  Google Scholar 

  4. S. Tabassam, A.H. Reshak, G. Murtaza, S. Muhammad, A. Laref, M. Masood Yousaf, M.A. Bakri, A.M. Bila, J, Co2YZ (Y= Cr, Nb, Ta, V and Z= Al, Ga) Heusler alloys under the effect of pressure and strain. J. Mol. Graph. Model. 104, 107841 (2021). https://doi.org/10.1016/j.jmgm.2021.107841

    Article  CAS  Google Scholar 

  5. A. Abdullah, M. Husain, N. Rahman, R. Khan, Z. Iqbal, S. Zulfiqar, M. Sohail, M. Umer, G. Murtaza, S. Naz Khan, A. Khan, A.H. Reshak, Computational investigation of structural, magnetic, elastic, and electronic properties of Half-Heusler ScVX (X = Si, Ge, Sn, and Pb) compounds Eur. Phys. J. Plus 136, 1176 (2021). https://doi.org/10.1140/epjp/s13360-021-02175-4

    Article  CAS  Google Scholar 

  6. Boumia L, Dahmane F, Doumi B, Rai DP, Khandy S A, Khachai H, Meradji H, Reshak A H, Khenata R (2019) Structural, electronic and magnetic properties of new full Heusler alloys Rh2CrZ (Z=Al, Ga, In): First-principles calculations. Chinese Journal of Physics. https://doi.org/10.1016/j.cjph.2019.04.002

  7. A.H. Reshak, Transport properties of Co-based Heusler compounds Co2VAl and Co2VGa: spin-polarized DFT+U. RSC Adv. 6(59), 54001–54012 (2016). https://doi.org/10.1039/c6ra10226c

    Article  CAS  Google Scholar 

  8. M. Berrahal, A. Bentouaf, H. Rached, R. Mebsout, B. Aissa, Investigation of Ruthenium based Full-Heusler compound for thermic, spintronics and thermoelectric applications: DFT computation. Mater. Sci. Semicond. Process. 134, 106047 (2021). https://doi.org/10.1016/j.mssp.2021.106047

    Article  CAS  Google Scholar 

  9. Aull, T., Şaşıoğlu, E., Maznichenko, I. V., Ostanin, S., Ernst, A., Mertig, I.,Galanakis, I. (2019). Abinitio design of quaternary Heusler compounds for reconfigurable magnetic tunnel diodes and transistors. Physical Review Materials, 3(12). https://doi.org/10.1103/physrevmaterials.3.1

  10. H.L. Huang, J.C. Tung, H.T. Jeng, A first-principles study of rare earth quaternary Heusler compounds: RXVZ (R = Yb, Lu, X = Fe Co, Ni, Z = Al, Si). Phys. Chem. Chem. Phys. 23(3), 2264–2274 (2021). https://doi.org/10.1039/d.0cp05191h

    Article  CAS  Google Scholar 

  11. B. Fadila, M. Ameri, D. Bensaid, M. Noureddine, I. Ameri, S. Mesbah, Y. Al-Douri, Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y = Fe, Ti): First principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. 448, 208–220 (2018). https://doi.org/10.1016/j.jmmm.2017.06.048

    Article  CAS  Google Scholar 

  12. Asma B, Belkharroubi F, Ibrahim,A., Lamia B, Mohammed A, Belkilali W, Al-Douri Y. (2021). Structural, mechanical, magnetic, electronic, and thermal investigations of Ag2YB (Y = Nd, Sm, Gd) full-Heusler alloys. Emergent Materials. https://doi.org/10.1007/s.42247-021-00257-8

  13. H. Saib, S. Dergal, H. Rached, M. Dergal, Spin gapless semiconductor behavior in d°-d half-Heusler CrSbSr: Potential candidate for spintronic application. SPIN (2020). https://doi.org/10.1142/s.2010324720500253

    Article  Google Scholar 

  14. T. Zerrouki, H. Rached, D. Rached, M. Caid, O. Cheref, M. Rabah, First-principles calculations to investigate structural stabilities, mechanical and optoelectronic properties of NbCoSn and NbFeSb half-Heusler compounds. Int. J. Quantum Chem. (2020). https://doi.org/10.1002/qua.26582

    Article  Google Scholar 

  15. Benidris M, Aziz Z, Khandy S A, Terkhi S, Ahmad M. A, Bouadjemi B, Laref A. (2021). Electronic structure, thermoelectric, mechanical and phonon properties of full-Heusler alloy (Fe2CrSb): first-principles study. Bulletin of Materials Science, 44(3). https://doi.org/10.1007/s.12034.021.02496.1

  16. S.J. Kim, W.H. Ryu, H.S. Oh, E.S. Park, A large reversible room temperature magneto-caloric effect in Ni-TM-Co-Mn-Sn (TM = Ti, V, Cr) meta-magnetic Heusler alloys. J. Appl. Phys. 123(3), 033903 (2018). https://doi.org/10.1063/1.5000147

    Article  CAS  Google Scholar 

  17. C. Guillemard, S. Petit-Watelot, J.C. Rojas-Sánchez, J. Hohlfeld, J. Ghanbaja, A. Bataille, S. Andrieu, Polycrystalline Co2Mn-based Heusler thin films with high spin polarization and low magnetic damping. Appl. Phys. Lett. 115(17), 172401 (2019). https://doi.org/10.1063/1.5121614

    Article  CAS  Google Scholar 

  18. Chadov S, Wu S C, Felser C.,Galanakis I. (2017). Stability of Wey l points in magnetic half-metallic Heusler compounds. Physical Review B, 96(2). https://doi.org/10.1103/physrevb.96.024435

  19. Faleev S V, Ferrante Y, Jeong J, Samant M G, Jones B,. Parkin, S S P (2017). Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance. Physical Review Materials, 1(2). https://doi.org/10.1103/physrevmaterials.1

  20. Gazi Yalcin Battal, Ground state properties and thermoelectric behavior of Ru2VZ (Z=Si, Ge, Sn) half-metallic ferromagnetic full-Heusler compounds. J Magn Magn Mater 408(137), 146 (2016)

    Google Scholar 

  21. 1016/j.jmmm.2016.02.064

  22. C. Wu, W. Zheng, W. Feng, W. Jiang, Band structures, magnetism, half-metallicity and elastic properties of full-Heusler alloy Cr2VSb. J. Phys. Soc. Jpn. 89, 064713 (2020). https://doi.org/10.7566/jpsj.89.064713

    Article  Google Scholar 

  23. M.K. Hussain, O.T. Hassan, A.M. Algubili, Investigations of the electronic and magnetic structures of Zr2NiZ (Z = Ga, In, B) Heusler compounds: first principles study. J. Electron. Mater. 6512, 2 (2018). https://doi.org/10.1007/s.11664.018.6512.2

    Article  Google Scholar 

  24. S. Galehgirian, F. Ahmadian, First principles study on half-metallic properties of Heusler compounds Ti2VZ (Z=Al, Ga and In). Solid State Commun. 202(52), 57 (2015). https://doi.org/10.1016/j.ssc.2014.10.017

    Article  CAS  Google Scholar 

  25. Hussain MK , Gao GY, Yao K-L, (2015) Half-metallic properties in the new Ti2NiB Heusler alloy, Journal of Superconductivity and Novel Magnetism 28 (11) 3285 3291 https://doi.org/10.1007/s10948-015-3149-8

  26. F. Benaddi, F. Belkharroubi, N. Ramdani, M. Ameri, S. Haouari, I. Ameri, Y. Al-Douri, Electronic and magnetic investigation of half-metallic ferrimagnetic full-Heusler Mn2IrGe. Emergent Materials (2021). https://doi.org/10.1007/s.42247.021.00231.4

    Article  Google Scholar 

  27. W Yao J Zhou D Zeng H Wan W Ruan L Liu Y Wen 2020 Computational discovery of the novel half-metallic full-Heusler alloys Mn2LiAs and Mn2LiSb J. Magn. Magn. Mater. 166642 https://doi.org/10.1016/j.jmmm.2020.166642

  28. Patel P D, Pandya J. B, Shinde, S. M, Gupta S. D, Narayan S, Jha P K (2020). Investigation of Full-Heusler compound Mn2MgGe for magnetism, spintronics and thermoelectric applications: DFT study. Computational Condensed Matter, e00472. https://doi.org/10.1016/j.cocom.2020.e00472

  29. L. Hao, R. Khenata, X. Wang, T. Yang, Ab Initio study of the structural, electronic, magnetic, mechanical and thermodynamic properties of full-Heusler Mn2CoGa. J. Electron. Mater. (2019). https://doi.org/10.1007/s.11664.019.07417.x

    Article  Google Scholar 

  30. Guermit Y, Caid M, Rached D, Drief M, Rekab-Djabri H, Lantri T, Benkhettou N. (2021) Investigation of structural, elastic, electronic, magnetic and thermoelectric proprieties for Mn2RhZ (Z = Al, Si and Ge) full-Heusler alloys. International Journal of Thermophysics, 42(6). https://doi.org/10.1007/s.10765.021.02841.w

  31. Maizia A, Belkharroubi F, Bourdim M, Khelfaoui F, Azzi S, Amara K (2020) First-principles study of a half-metallic ferrimagnetic new full-Heusler Mn2OsGe alloy, Journal SPIN 10(4) 2050026.1 https://doi.org/10.1142/S2010324720500265

  32. R. Prakash, G. Kalpana, Prediction of structural, electronic and magnetic properties of full Heusler alloys Ir2YSi (Y = Sc, Ti, V, Cr, Mn, Fe Co, and Ni) via first-principles calculation. AIP Adv. 11(1), 015042 (2021). https://doi.org/10.1063/9.0000101

    Article  CAS  Google Scholar 

  33. A. Candal, A study on magnetic, electronic, elastic and vibrational properties of Ir2MnAl Heusler alloy for spintronic applications. Materials Research Express (2019). https://doi.org/10.1088/2053.1591/ab308b

    Article  Google Scholar 

  34. G. Forozani, F. Karami, M. Moradi, Structural, electronic, magnetic, and optical properties of Ir2ScZ (Z = Si, Ge, Sn) full-Heusler compounds: a first-principles study. J. Electron. Mater. (2020). https://doi.org/10.1007/s.11664.020.08308.2

    Article  Google Scholar 

  35. Blaha P, Schwarz K, Sorantin P, Trickey SB, Full-potential linearized augmented plane wave programs for crystalline systems Comput Phys Commun 59 (2) 1990 399 415, https://doi.org/10.1016/0010.4655(90)90187.6

  36. Hohenberg P, Kohn W, Inhomogeneous electron gas Phys Rev 136(3B) (1964) B864 B871, https://doi.org/10.1103/PhysRev.136.B864

  37. Hadji T, Khalfoun H, Rached H , Guermit Y, Azzouz-Rached A ,Rached D. (2020) , DFT study with different exchange-correlation potentials of physical properties of the new synthesized alkali-metal based Heusler alloy , The European Physical Journal B 93(1110204.5 https://org/https://doi.org/10.1140/epjb/e2020.10204.5

  38. M. Ram, A. Saxena, A.E. Aly, A. Shankar, Half-metallicity in new Heusler alloys Mn2ScZ (Z = Si, Ge, Sn). RSC Adv. 10(13), 7661–7670 (2020). https://doi.org/10.1039/c9ra09303f

    Article  CAS  Google Scholar 

  39. Ouadha I, Rached H, Azzouz-Rached A, Reggad A, Rached D, Study of the structural, mechanical and thermodynamic properties of the new MAX phase compounds (Zr1-xTix)3AlC2, Computational Condensed Matter 23(2020) e00468.1, https://org/https://doi.org/10.1016/j.cocom.2020.e00468

  40. Rached H, Bendaoudia S, Rached D (2017) Investigation of iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation, Materials Chemistry and Physics 193453–469 https://org/https://doi.org/10.1016/j.matchemphys.2017.03.006

  41. Elahmar MH, Rached H, Rached D, Benalia S, Khenata R, Biskri ZE , Bin Omran S (2016), Structural stability, electronic structure and magnetic properties of the new hypothetical half-metallic ferromagnetic full-Heusler alloy CoNiMnSi , Materials Science-Poland 34(1) 85 93 https://org/https://doi.org/10.1515/msp-2016-0011

  42. Benkabou M , Rached H, Abdellaoui A, Rached D, Khenata R, Elahmar MH, Abidri B, Benkhettou N, Bin-Omran (2015) S, Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z = Al, Ga, Ge and Si) via first-principle calculations, Journal of Alloys and Compounds 647 276 286 https://org/https://doi.org/10.1016/j.jallcom.2015.05.273

  43. Rached H, Elahmar MH, Rached D, Khenata R , Murtaza G, Bin Omran S, Ahmed WK, (2015) Structural , mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z=Si, As, Sb): a first-principle study, Journal of Magnetism and Magnetic Materials 393 165 174 https://org/https://doi.org/10.1016/j.jmmm.2015.05.019

  44. Rached H, Rached D, Khenata R, Abidri B, Rabah M, Benkhettou N, Omran SB, (2015) A first principle study of phase stability, electronic structure and magnetic properties for Co2−xCrxMnAl Heusler alloys ,Journal of Magnetism and Magnetic Materials 379. 84 89 https://org/https://doi.org/10.1016/j.jmmm.2014.12.013

  45. Perdew JP, Burke Kieron, Ernzerhof Matthias (1996) Generalized gradient approximation made simple, Phys Rev Lett 77(18) 3865 3868 https://org/https://doi.org/10.1103/PhysRevLett.77.3865

  46. Blaha P, Schwarz K, Medsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k: an augmented plane wave local orbitals program for calculating crystal properties, Techn University at Wien Austria, http://www.wien2k.at/

  47. H.E. Saad, M M Elhag A., DFT study on the crystal, electronic and magnetic structures of tantalum based double perovskite oxides Ba2MTaO6 (M = Cr, Mn, Fe) via GGA and GGA + U. Results in Physics 9(793), 805 (2018). https://doi.org/10.1016/j.rinp.2018.03.055

    Article  Google Scholar 

  48. S.A. Sofi, D.C. Gupta, Exploration of electronic structure, mechanical stability, magnetism, and thermophysical properties of L21 structured Co2XSb (X = Sc and Ti) ferromagnets. Int. J. Energy Res. (2019). https://doi.org/10.1002/er.5071

    Article  Google Scholar 

  49. B. Merabet, A.J.H. Almaliky, A.H. Reshak, M.M. Ramli, J. Bila, Dielectric absorption correlated to ferromagnetic behavior in (Cr, Ni)-codoped 4H–SiC for microwave applications. J. Mol. Struct. 1248, 131462 (2022). https://doi.org/10.1016/j.molstruc.2021.131

    Article  CAS  Google Scholar 

  50. H Yu H Huang AH Reshak S Auluck L Liu T Ma Y Zhang 2020 Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoreduction Appl. Catal. B 119709 https://doi.org/10.1016/j.apcatb.2020.119709

  51. R. Ullah, A.H. Reshak, M. Azmat Ali, A. Khan, G. MurtazaAL-Anazy M, Althib H, Flemban T H., Pressure-dependent elasto-mechanical stability and thermoelectric properties of MYbF3 (M = Rb, Cs) materials for renewable energy. Int. J. Energy Res. 45(6), 8711–8723 (2021). https://doi.org/10.1002/er.6408

    Article  CAS  Google Scholar 

  52. D.M. Hoat, S. Amirian, H. Alborznia, A. Laref, A.H. Reshak, M. Naseri, Strain effect on the electronic and optical properties of 2D Tetrahexcarbon: a DFT-based study. Indian J. Phys. (2021). https://doi.org/10.1007/s12648-020-01913-1

    Article  Google Scholar 

  53. M. Husain, N. Rahman, A.H. Reshak, H.A. Zulfiqar, S. Ali, S, A. Laref A, A. M. Mustafa Al Bakri A M, Bila J, Insight into the physical properties of the inter-metallic titanium-based binary compounds Eur. Phys. J. Plus 136, 624 (2021). https://doi.org/10.1140/epjp/s13360-021-01590-x

    Article  CAS  Google Scholar 

  54. Shakil M., Arshad H., Zafar M., Rizwan M., Gillani S. S. A., Ahmed S. (2020). First-principles computation of new series of quaternary Heusler alloys CoScCrZ (Z = Al, Ga, Ge, In): a study of structural, magnetic, elastic and thermal response for spintronic devices. Molecular Physics, e1789770. https://doi.org/10.1080/00268976.2020.17897

  55. M. Zafar, S. Amjad, M. Shakil, S.S.A. Gillani, H. Arshad, M.B. Tahir, N.H. Tariq, Determination of structural, mechanical, thermal and magnetic properties of Cr based new quaternary Heusler alloys with GGA and GGA+U. Phys. Scr. 96, 035701 (2021). https://doi.org/10.1088/1402-4896/abd443

    Article  CAS  Google Scholar 

  56. M. Shakil, H. Sadia, I. Zeba, S.S.A. Gillani, S. Ahmad, M. Zafar, First-principles study of structural, mechanical, thermal, electronic and magnetic properties of highly spin-polarized quaternary Heusler alloy CoYVSn. Solid State Commun. 325, 114157 (2021). https://doi.org/10.1016/j.ssc.2020.114157

    Article  CAS  Google Scholar 

  57. MI Khan H Arshad M Rizwan SSA Gillani M Zafar S Ahmed M Shakil 2019 Investigation of structural, electronic, magnetic and mechanical properties of a new series of equiatomic quaternary Heusler alloys CoYCrZ (Z = Si, Ge, Ga, Al): A DFT study J. Alloy. Compd. 152964 https://doi.org/10.1016/j.jallcom.2019.152964

  58. Murnaghan FD, The compressibility of media under extreme pressures, Proc Natl Acad Sci 30(9) (1944) 244 247 http://dx.org/https://doi.org/10.1073/pnas.30.9.244

  59. F. Belkharroubi, F. Khelfaoui, K. Amara, N. Marbouh, M. Ameri, Y. Si Abderrahmane, Robust half metallicity state with the hydrostatic and tetragonal distortion for a new quaternary Heusler ZrTiRhGa: FP-LAPW calculations. Physica B (2018). https://doi.org/10.1016/j.physb.2018.12.037

    Article  Google Scholar 

  60. D.M. Hoat, M. Naseri, N.T.T. Binh, T.V. Vu, J.F. Rivas-Silva, M.M. Obeid, G.H. Cocoletzi, Strain-tunable electronic, optical and thermoelectric properties of BP monolayer investigated by FP-LAPW calculations. Physica B 603, 412757 (2021). https://doi.org/10.1016/j.physb.2020.412757

    Article  CAS  Google Scholar 

  61. N. Kervan, S. Kervan, O. Canko, M. Atiş, F. Taşkın, Half-metallic ferrimagnetism in the Mn2NbAl Full-Heusler compound: a first-principles study. J. Supercond. Novel Magn. 29(1), 187–192 (2015). https://doi.org/10.1007/s10948-015-3228-x

    Article  CAS  Google Scholar 

  62. M.J. Mehl, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Phys Rev B 47(2493), 2500 (1993). https://doi.org/10.1103/PhysRevB.47.2493

    Article  Google Scholar 

  63. E. Schreiber, O.L. Anderson, N. Soga, Elastic constants and their measurements (McGraw-Hill, New York, 1973)

    Google Scholar 

  64. M. Jamal, M. Bilal, A. Iftikhar, S.I. Jalali-Asadabadi, Relast package Journal of Alloys and Compounds 735, 569–579 (2018). https://doi.org/10.1007/s12648-020-01913-1

    Article  CAS  Google Scholar 

  65. D.C. Wallace, Thermodynamics of Crystals. Acta Crystallographica Section A2, 582–583 (1973). https://doi.org/10.1107/S056773947300149X

    Article  Google Scholar 

  66. Born M, On the stability of crystal lattices. IV (1940) Proc Cambridge Philos Soc 36(04 466–478 https://doi.org/10.1017/S0305004100017515

  67. Born M (1956) Huang K, Dynamical Theory of Crystal Lattices ,Acta Crystallographica, 8(7) 444–444. https://org/https://doi.org/10.1107/S0365110X5500279X

  68. M. Born, K. Huang, Dynamical theory of crystal lattices. Clarendon press (1954). https://doi.org/10.4236/oalib.1100648

    Article  Google Scholar 

  69. H.C. Cheng, C.-F. Yu, W.H. Chen, First-principles density functional calculation of mechanical, thermodynamic and electronic properties of CuIn and Cu2In crystals. J. Alloy. Compd. 546, 286–295 (2013). https://doi.org/10.1016/j.jallcom.2012.08.077

    Article  CAS  Google Scholar 

  70. Mayer B , Anton H , Bott E, Methfessel M, Sticht J, Harris J, Schmidt PC (2003) Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases, Intermetallics 11 00127–00129 http://dx.org/https://doi.org/10.1002/andp.18892741206

  71. R. Hill, The elastic behaviour of a crystalline aggregate. Proc Phys Soc London, A 65, 349–354 (1952). https://doi.org/10.1002/zamm.19290090104

    Article  Google Scholar 

  72. Ullah H, Kayani F S, Khenata R (2019). Insight into the mechanical, thermal, electronic and magnetic properties of cubic lanthanide built perovskites oxides PrXO3 (X=Al, Ga).Journal of Materials Research Express. https://doi.org/10.1088/2053-1591/ab5903

  73. S. Singh, R. Kumar, Ab-initio calculations of elastic constants and thermodynamic properties of LuAuPb and YAuPb half-Heusler compounds. J. Alloy. Compd. 722, 544–548 (2017). https://doi.org/10.1016/j.jallcom.2017.06.131

    Article  CAS  Google Scholar 

  74. J.F. Nye, Propriétés physiques des matériaux. Dunod 84, 335–341 (1961)

    Google Scholar 

  75. http://dx.org/ https://doi.org/10.1016/j.jallcom.2012.08.077

  76. Yalameha S, Vaez A (2019) Structural, electronic, elastic and thermodynamic properties of Al1-xZxNi (Z=Cr, V and x= 0, 0.125, 0.25) alloys: first-principle calculations journal Computational Condensed Matter https://org/https://doi.org/10.1016/j.cocom.2019.e00415

  77. Mayer B, Anton H, Bott E ,Methfessel , Sticht , Harris J, Schmidt ,PC (2003) Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases, Intermetallics 11 00127–00129 http://dx.org/https://doi.org/10.1002/andp.18892741206

  78. Hill R, (1952) The elastic behaviour of a crystalline aggregate, Proc Phys Soc London, A 65 349–354 http://dx.org/https://doi.org/10.1002/zamm.19290090104

  79. A.I. Popoola, A.Y. Odusote, O.E. Ayo-Ojo, Stability and the electronic structure of XB2 (X = Pt, Ir, Pd, Rh, Os) diborides. Latv. J. Phys. Tech. Sci. 54(4), 49–57 (2017). https://doi.org/10.1515/lpts-2017-0026

    Article  Google Scholar 

  80. M. Belkhouane, S. Amari, A. Yakoubi, A. Tadjer, S. Méçabih, G. Murtaza, R. Khenata, First-principles study of the electronic and magnetic properties of Fe2MnAl, Fe2MnSi and Fe2MnSi0.5Al0.5. J. Magn. Magn. Mater. 377, 211–214 (2015). https://doi.org/10.1016/j.jmmm.2014.10.094

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Al-Douri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samia, L., Belkharroubi, F., Ibrahim, A. et al. Investigation of structural, elastic, electronic, and magnetic proprieties for X2LuSb (X = Mn and Ir) full-Heusler alloys. emergent mater. 5, 537–551 (2022). https://doi.org/10.1007/s42247-022-00374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00374-y

Keywords

Navigation