Skip to main content

Advertisement

Log in

Recent developments in functionalized polymer NF membranes for biofouling control

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Nanofiltration (NF) membranes have recently received growing interest in many sectors as an eco-friendly and effective separation technology. Nevertheless, biofouling resulting from the accretion and growth of bacteria over the NF membrane surface constitutes the major drawback affecting the NF membrane separation systems and prohibiting their use, especially in long term. In fact, under well-moderated growth conditions, many types of microorganisms occurring in aqueous environments (e.g., bacteria, fungi, algae, and protozoa) are prone to adhere onto the surface of the nanofiltration membrane, resulting in the formation of a biofilm, which in turn reduces the membrane's performance. Functionalization of NF membranes with specific materials/nanomaterials is one promising strategy to surmount this inherent problem. The objective of this review is to provide first a thorough study of the biofouling phenomenon of nanofiltration membranes by establishing the main mechanisms causing membrane biofouling and the proposed strategies for its control and monitoring. Next, recent developments in functionalizing polymer NF membranes with nanomaterials including carbonaceous materials, metal and metal oxides, proteins, enzymes, etc. as a powerful strategy for biofouling control are elucidated and discussed in detail. Further, physical and chemical fabrication methods for nanofiltration composite membranes and their practical applications are addressed as well as current issues and futures perspectives are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Drioli, M. Romano, Progress and new perspectives on integrated membrane operations for sustainable industrial growth. Ind. Eng. Chem. Res. 40, 1277–1300 (2001). https://doi.org/10.1021/ie0006209

    Article  CAS  Google Scholar 

  2. S.M. Samaei, S. Gato-Trinidad, A. Altaee, The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – A review. Sep. Purif. Technol. 200, 198–220 (2018). https://doi.org/10.1016/j.seppur.2018.02.041

    Article  CAS  Google Scholar 

  3. A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 81, 1–21 (2018). https://doi.org/10.1016/j.rser.2017.07.047

    Article  CAS  Google Scholar 

  4. N.M. Kocherginsky, Q. Yang, L. Seelam, Recent advances in supported liquid membrane technology. Sep. Purif. Technol. 53, 171–177 (2007). https://doi.org/10.1016/j.seppur.2006.06.022

    Article  CAS  Google Scholar 

  5. B. Van der Bruggen, Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis. In: in: Fundam. Model. Membr. Syst. Membr. Process Perform., Elsevier Inc., pp. 25–70. (2018). https://doi.org/10.1016/B978-0-12-813483-2.00002-2

  6. B. Lin, H. Tan, W. Liu, C. Gao, Q. Pan, Preparation of a novel zwitterionic striped surface thin-film composite nanofiltration membrane with excellent salt separation performance and antifouling property. RSC Adv. 10, 16168–16178 (2020). https://doi.org/10.1039/d0ra00480d

    Article  CAS  Google Scholar 

  7. A.M. Hassan, M.A.K. Al-Sofi, A.S. Al-Amoudi, A.T.M. Jamaluddin, A.M. Farooque, A. Rowaili, A.G.I. Dalvi, N.M. Kither, G.M. Mustafa, I.A.R. Al-Tisan, A new approach to membrane and thermal seawater desalination processes using nanofiltration membranes (Part 1). Desalination 118, 35–51 (1998). https://doi.org/10.1016/S0011-9164(98)00079-4

    Article  CAS  Google Scholar 

  8. A. Bódalo, E. Gómez, A.M. Hidalgo, M. Gómez, M.D. Murcia, I. López, Nanofiltration membranes to reduce phenol concentration in wastewater. Desalination 245, 680–686 (2009). https://doi.org/10.1016/j.desal.2009.02.037

    Article  CAS  Google Scholar 

  9. C. Charcosset, Membrane process in pharmaceutical and biotechnological applications. ITBM-RBM 27, 1–7 (2006). https://doi.org/10.1016/j.rbmret.2005.10.003

    Article  Google Scholar 

  10. K. Nath, H.K. Dave, T.M. Patel, Revisiting the recent applications of nanofiltration in food processing industries: Progress and prognosis. Trends Food Sci. Technol. 73, 12–24 (2018). https://doi.org/10.1016/j.tifs.2018.01.001

    Article  CAS  Google Scholar 

  11. M.N. Chollom, S. Rathilal, Fouling and Cleaning in Osmotically Driven Membranes, Osmotically Driven Membr. Process. - Approach, Dev. Curr. Status. p. 73047 (2018). https://doi.org/10.5772/intechopen.73047.

  12. A.I. Schäfer, N. Andritsos, J. Anastasios, E.M. V Hoek, R. Schneider,Fouling in Nanofiltration, in: Nanofiltration - Princ. Appl. 169–239 (2004)

  13. E.A. Bell, R.W. Holloway, T.Y. Cath, Evaluation of forward osmosis membrane performance and fouling during long-term osmotic membrane bioreactor study. J. Memb. Sci. 517, 1–13 (2016). https://doi.org/10.1016/j.memsci.2016.06.014

    Article  CAS  Google Scholar 

  14. S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 595, 567–583 (2017). https://doi.org/10.1016/j.scitotenv.2017.03.235

    Article  CAS  Google Scholar 

  15. M.A. Al Mamun, S. Bhattacharjee, D. Pernitsky, M. Sadrzadeh, Colloidal fouling of nanofiltration membranes: Development of a standard operating procedure, Membranes (Basel). 7, 4 (2017). https://doi.org/10.3390/membranes7010004

  16. N. Ogawa, K. Kimura, Y. Watanabe, Membrane fouling in nanofiltration/reverse osmosis membranes coupled with a membrane bioreactor used for municipal wastewater treatment. Desalin. Water Treat. 18, 292–296 (2010). https://doi.org/10.5004/dwt.2010.1795

    Article  CAS  Google Scholar 

  17. R. Komlenic, Rethinking the causes of membrane biofouling. Filtr. Sep. 47, 26–28 (2010). https://doi.org/10.1016/S0015-1882(10)70211-1

    Article  Google Scholar 

  18. V. Kochkodan, N. Hilal, A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356, 187–207 (2015). https://doi.org/10.1016/j.desal.2014.09.015

    Article  CAS  Google Scholar 

  19. T. Nguyen, F.A. Roddick, L. Fan, Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures. Membranes (Basel). 2, 804–840 (2012). https://doi.org/10.3390/membranes2040804

    Article  CAS  Google Scholar 

  20. A. Al-Amoudi, R.W. Lovitt, Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Memb. Sci. 303, 4–28 (2007). https://doi.org/10.1016/j.memsci.2007.06.002

    Article  CAS  Google Scholar 

  21. J. Mansouri, S. Harrisson, V. Chen, Strategies for controlling biofouling in membrane filtration systems: Challenges and opportunities. J. Mater. Chem. 20, 4567–4586 (2010). https://doi.org/10.1039/b926440j

    Article  CAS  Google Scholar 

  22. S. Bucs, N. Farhat, J.C. Kruithof, C. Picioreanu, M.C.M. van Loosdrecht, J.S. Vrouwenvelder, Review on strategies for biofouling mitigation in spiral wound membrane systems. Desalination 434, 189–197 (2018). https://doi.org/10.1016/j.desal.2018.01.023

    Article  CAS  Google Scholar 

  23. D. Pichardo-Romero, Z.P. Garcia-Arce, A. Zavala-Ramírez, R. Castro-Muñoz, Current advances in biofouling mitigation in membranes for water treatment: An overview. Processes. 8, 1–22 (2020). https://doi.org/10.3390/pr8020182

    Article  CAS  Google Scholar 

  24. H. Lin, Y. Ding, Polymeric membranes: Chemistry, physics, and applications. J. Polym. Sci. 58, 2433–2434 (2020). https://doi.org/10.1002/pol.20200622

    Article  CAS  Google Scholar 

  25. S.P. Kaldis, G. Skodras, P. Grammelis, G.P. Sakellaropoulos, Application of polymer membrane technology in coal combustion processes. Chem. Eng. Commun. 194, 322–333 (2007). https://doi.org/10.1080/15397730600830021

    Article  CAS  Google Scholar 

  26. S. Waqas, M.R. Bilad, Z.B. Man, C. Klaysom, J. Jaafar, A.L. Khan, An integrated rotating biological contactor and membrane separation process for domestic wastewater treatment. Alexandria Eng. J. 59, 4257–4265 (2020). https://doi.org/10.1016/j.aej.2020.07.029

    Article  Google Scholar 

  27. M.K. Selatile, S.S. Ray, V. Ojijo, R. Sadiku, Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Adv. 8, 37915–37938 (2018). https://doi.org/10.1039/C8RA07489E

    Article  CAS  Google Scholar 

  28. D.M. Warsinger, S. Chakraborty, E.W. Tow, M.H. Plumlee, C. Bellona, S. Loutatidou, L. Karimi, A.M. Mikelonis, A. Achilli, A. Ghassemi, L.P. Padhye, S.A. Snyder, S. Curcio, C.D. Vecitis, H.A. Arafat, J.H. Lienhard, A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 81, 209–237 (2018). https://doi.org/10.1016/j.progpolymsci.2018.01.004

    Article  CAS  Google Scholar 

  29. M.A. Abdel-Fatah, Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 9, 3077–3092 (2018). https://doi.org/10.1016/j.asej.2018.08.001

    Article  Google Scholar 

  30. K. Nath, H.K. Dave, T.M. Patel, Revisiting the recent applications of nanofiltration in food processing industries: Progress and prognosis, Trends Food Sci. Technol. 73, 12–24 (2018). https://doi.org/10.1016/j.tifs.2018.01.001.

  31. M. Shokri Doodeji, M. Zerafat, A review on the applications of nanofiltration in virus removal and pharmaceutical industries. Glob J. Nanomedicine. 3, 125–127 (2018). https://doi.org/10.19080/GJN.2018.03.555624

    Article  Google Scholar 

  32. P. Wu, M. Imai, Novel biopolymer composite membrane involved with selective mass transfer and excellent water permeability, in: Adv. Desalin. 2012: pp. 57–81

  33. C. Conidi, R. Castro-Muñoz, A. Cassano, Nanofiltration in beverage industry. Nanotechnol. Beverage Ind. (2020) 525–548. https://doi.org/10.1016/b978-0-12-819941-1.00018-3

  34. F.G. Donnan, Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. J. Memb. Sci. 100, 45–55 (1995). https://doi.org/10.1016/0376-7388(94)00297-C

    Article  CAS  Google Scholar 

  35. P. Marchetti, M.F. Jimenez Solomon, G. Szekely, A.G. Livingston, Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 114, 10735–10806 (2014). https://doi.org/10.1021/cr500006j

    Article  CAS  Google Scholar 

  36. B.A. Abdelkader, M.A. Antar, Z. Khan, Nanofiltration as a pretreatment step in seawater desalination: A Review. Arab. J. Sci. Eng. 43, 4413–4432 (2018). https://doi.org/10.1007/s13369-018-3096-3

    Article  CAS  Google Scholar 

  37. H.D.M. Sombekke, D.K. Voorhoeve, P. Hiemstra, Environmental impact assessment of groundwater treatment with nanofiltration. Desalination 113, 293–296 (1997). https://doi.org/10.1016/S0011-9164(97)00144-6

    Article  CAS  Google Scholar 

  38. A.W. Mohammad, N. Hilal, H. Al-Zoubib, N.A. Darwish, N. Ali, Modelling the effects of nanofiltration membrane properties on system cost assessment for desalination applications. Desalination 206, 215–225 (2007). https://doi.org/10.1016/j.desal.2006.02.068

    Article  CAS  Google Scholar 

  39. M. Paul, S.D. Jons, Chemistry and fabrication of polymeric nanofiltration membranes: A review. Polymer (Guildf). 103, 417–456 (2016). https://doi.org/10.1016/j.polymer.2016.07.085

    Article  CAS  Google Scholar 

  40. C. Zhao, J. Xue, F. Ran, S. Sun, Modification of polyethersulfone membranes - A review of methods. Prog. Mater. Sci. 58, 76–150 (2013). https://doi.org/10.1016/j.pmatsci.2012.07.002

    Article  CAS  Google Scholar 

  41. Y. Liu, G.Q. Chen, X. Yang, H. Deng, Preparation of layer-by-layer nanofiltration membranes by dynamic deposition and crosslinking. Membranes (Basel). 9 (2019). https://doi.org/10.3390/membranes9020020

  42. F.M. Roli, H.W. Yussof, S.M. Saufi, M.N.A. Seman, A.W. Mohammad, Synthesis of nanofiltration membrane developed from triethanolamine (TEOA) and trimesoyl chloride (TMC) for separation of xylose from glucose. Chem. Eng. Trans. 56, 1507–1512 (2017). https://doi.org/10.3303/CET1756252

    Article  Google Scholar 

  43. M.A. Rasool, C. Van Goethem, I.F.J. Vankelecom, Green preparation process using methyl lactate for cellulose-acetate-based nanofiltration membranes. Sep. Purif. Technol. 232, 115903 (2020). https://doi.org/10.1016/j.seppur.2019.115903

    Article  CAS  Google Scholar 

  44. I. Ounifi, C. Ursino, S. Santoro, J. Chekir, A. Hafiane, A. Figoli, E. Ferjani, Cellulose acetate nanofiltration membranes for cadmium remediation. J Membr Sci Res 6, 226–234 (2020). https://doi.org/10.22079/JMSR.2020.120669.1336

    Article  CAS  Google Scholar 

  45. J.H. Choi, K. Fukushi, K. Yamamoto, A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: the performance of cellulose acetate nanofiltration membranes for long-term operation. Sep. Purif. Technol. 52, 470–477 (2007). https://doi.org/10.1016/j.seppur.2006.05.027

    Article  CAS  Google Scholar 

  46. N. Ghaemi, S.S. Madaeni, A. Alizadeh, P. Daraei, A.A. Zinatizadeh, F. Rahimpour, Separation of nitrophenols using cellulose acetate nanofiltration membrane: Influence of surfactant additives. Sep. Purif. Technol. 85, 147–156 (2012). https://doi.org/10.1016/j.seppur.2011.10.003

    Article  CAS  Google Scholar 

  47. J. Su, Q. Yang, J.F. Teo, T.S. Chung, Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J. Memb. Sci. 355, 36–44 (2010). https://doi.org/10.1016/j.memsci.2010.03.003

    Article  CAS  Google Scholar 

  48. H. Wang, T. Yu, C. Zhao, Q. Du, Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fibers Polym. 10, 1–5 (2009). https://doi.org/10.1007/s12221-009-0001-4

    Article  CAS  Google Scholar 

  49. R. Du, J. Zhao, Positively charged composite nanofiltration membrane prepared by Poly ( N , N -dimethylaminoethyl methacrylate )/ Polysulfone, (2003)

  50. M. Homayoonfal, A. Akbari, M. Reza, Preparation of polysulfone nano fi ltration membranes by UV-assisted grafting polymerization for water softening. DES. 263, 217–225 (2010). https://doi.org/10.1016/j.desal.2010.06.062

    Article  CAS  Google Scholar 

  51. R. Derakhsheshpoor, M. Homayoonfal, A. Akbari, M.R. Mehrnia, Amoxicillin separation from pharmaceutical wastewater by high permeability polysulfone nanofiltration membrane. J. Environ. Heal. Sci. Eng. 11, 1–10 (2013). https://doi.org/10.1186/2052-336X-11-9

    Article  CAS  Google Scholar 

  52. E. Saljoughi, S.M. Mousavi, Preparation and characterization of novel polysulfone nanofiltration membranes for removal of cadmium from contaminated water. Sep. Purif. Technol. 90, 22–30 (2012). https://doi.org/10.1016/j.seppur.2012.02.008

    Article  CAS  Google Scholar 

  53. S.H. Chen, D.J. Chang, R.M. Liou, C.S. Hsu, S.S. Lin, Preparation and separation properties of polyamide nanofiltration membrane. J. Appl. Polym. Sci. 83, 1112–1118 (2002). https://doi.org/10.1002/app.2282

    Article  CAS  Google Scholar 

  54. C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti, Retention of mineral salts by a polyamide nanofiltration membrane. Sep. Purif. Technol. 30, 47–55 (2003). https://doi.org/10.1016/S1383-5866(02)00107-7

    Article  CAS  Google Scholar 

  55. A. Akbari, J.C. Remigy, P. Aptel, Treatment of textile dye effluent using a polyamide-based nanofiltration membrane. Chem. Eng. Process. 41, 601–609 (2002). https://doi.org/10.1016/S0255-2701(01)00181-7

    Article  CAS  Google Scholar 

  56. Y. Liang, Y. Zhu, C. Liu, K.R. Lee, W.S. Hung, Z. Wang, Y. Li, M. Elimelech, J. Jin, S. Lin, Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 11, 1–9 (2020). https://doi.org/10.1038/s41467-020-15771-2

    Article  CAS  Google Scholar 

  57. S. Mehdipour, V. Vatanpour, H.R. Kariminia, Influence of ion interaction on lead removal by a polyamide nanofiltration membrane. Desalination 362, 84–92 (2015). https://doi.org/10.1016/j.desal.2015.01.030

    Article  CAS  Google Scholar 

  58. C. Wei, Q. Cheng, L. Lin, Z. He, K. Huang, S. Ma, L. Chen, One-step fabrication of recyclable polyimide nanofiltration membranes with high selectivity and performance stability by a phase inversion-based process. J. Mater. Sci. 53, 11104–11115 (2018). https://doi.org/10.1007/s10853-018-2369-2

    Article  CAS  Google Scholar 

  59. A.M. Hidalgo, G. León, M. Gómez, M.D. Murcia, M.D. Bernal, S. Ortega, Polyamide nanofiltration membranes to remove aniline in aqueous solutions. Environ. Technol. (United Kingdom) 35, 1175–1181 (2014). https://doi.org/10.1080/09593330.2013.864338

    Article  CAS  Google Scholar 

  60. D. Shi, Y. Kong, J. Yu, Y. Wang, J. Yang, Separation performance of polyimide nanofiltration membranes for concentrating spiramycin extract. Desalination 191, 309–317 (2006). https://doi.org/10.1016/j.desal.2005.09.015

    Article  CAS  Google Scholar 

  61. I. Soroko, Y. Bhole, A.G. Livingston, Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chem. 13, 162–168 (2011). https://doi.org/10.1039/c0gc00155d

    Article  CAS  Google Scholar 

  62. Y. Kong, D. Shi, H. Yu, Y. Wang, J. Yang, Y. Zhang, Separation performance of polyimide nanofiltration membranes for solvent recovery from dewaxed lube oil filtrates. Desalination 191, 254–261 (2006). https://doi.org/10.1016/j.desal.2005.09.014

    Article  CAS  Google Scholar 

  63. C.C. Lin, W.F. Lien, Y.Z. Wang, H.W. Shiu, C.H. Lee, Preparation and performance of sulfonated polyimide/Nafion multilayer membrane for proton exchange membrane fuel cell. J. Power Sources. 200, 1–7 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.001

    Article  CAS  Google Scholar 

  64. T. He, M. Frank, M.H.V. Mulder, M. Wessling, Preparation and characterization of nanofiltration membranes by coating polyethersulfone hollow fibers with sulfonated poly(ether ether ketone) (SPEEK). J. Memb. Sci. 307, 62–72 (2008). https://doi.org/10.1016/j.memsci.2007.09.016

    Article  CAS  Google Scholar 

  65. R.H. Tullis, R.P. Duffin, M. Zech, J.L. Ambrus, Affinity hemodialysis for antiviral therapy. I. Removal of HIV-1 from cell culture supernatants, plasma, and blood. Ther. Apher. 6, 213–220 (2002). https://doi.org/10.1046/j.1526-0968.2002.00407.x

    Article  Google Scholar 

  66. Y. Li, H. Zhang, X. Li, H. Zhang, W. Wei, Porous poly (ether sulfone) membranes with tunable morphology: Fabrication and their application for vanadium flow battery. J. Power Sources. 233, 202–208 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.088

    Article  CAS  Google Scholar 

  67. W.P. Zhu, S.P. Sun, J. Gao, F.J. Fu, T.S. Chung, Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. J. Memb. Sci. 456, 117–127 (2014). https://doi.org/10.1016/j.memsci.2014.01.001

    Article  CAS  Google Scholar 

  68. M.N.A. Seman, M. Khayet, N. Hilal, Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. J. Memb. Sci. 348, 109–116 (2010). https://doi.org/10.1016/j.memsci.2009.10.047

    Article  CAS  Google Scholar 

  69. A. Moarefian, H.A. Golestani, H. Bahmanpour, Removal of amoxicillin from wastewater by self-made Polyethersulfone membrane using nanofiltration. Environ. Heal. 12, 1–10 (2014) 

  70. D. Karisma, G. Febrianto, D. Mangindaan, Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane. IOP Conf. Ser. Earth Environ. Sci. 109, 0–6 (2018). https://doi.org/10.1088/1755-1315/109/1/012012

  71. I.C. Kim, K.H. Lee, Effect of poly(ethylene glycol) 200 on the formation of a polyetherimide asymmetric membrane and its performance in aqueous solvent mixture permeation. J. Memb. Sci. 230, 183–188 (2004). https://doi.org/10.1016/j.memsci.2003.11.002

    Article  CAS  Google Scholar 

  72. B. Seifert, G. Mihanetzis, T. Groth, W. Albrecht, K. Richau, Y. Missirlis, D. Paul, G. Von Sengbusch, Polyetherimide: A new membrane-forming polymer for biomedical applications. Artif. Organs. 26, 189–199 (2002). https://doi.org/10.1046/j.1525-1594.2002.06876.x

    Article  CAS  Google Scholar 

  73. A. El-Gendi, E. Favre, D. Roizard, Asymmetric polyetherimide membranes (PEI) for nanofiltration treatment. Eur. Polym. J. 105, 204–216 (2018). https://doi.org/10.1016/j.eurpolymj.2018.06.001

    Article  CAS  Google Scholar 

  74. G. Febrianto, D. Karisma, D. Mangindaan, Polyetherimide nanofiltration membranes modified by interfacial polymerization for treatment of textile dyes wastewater. IOP Conf. Ser. Mater. Sci. Eng. 622, 1–8 (2019). https://doi.org/10.1088/1757-899X/622/1/012019

    Article  Google Scholar 

  75. M.M.A. Almijbilee, X. Wu, A. Zhou, X. Zheng, X. Cao, W. Li, Polyetheramide organic solvent nanofiltration membrane prepared via an interfacial assembly and polymerization procedure. Sep. Purif. Technol. 234, 116033 (2020). https://doi.org/10.1016/j.seppur.2019.116033

    Article  CAS  Google Scholar 

  76. Y. Qi, L. Zhu, C. Gao, J. Shen, A novel nanofiltration membrane with simultaneously enhanced antifouling and antibacterial properties. RSC Adv. 9, 6107–6117 (2019). https://doi.org/10.1039/c8ra09875a

    Article  CAS  Google Scholar 

  77. A. Simon, W.E. Price, L.D. Nghiem, Changes in surface properties and separation efficiency of a nanofiltration membrane after repeated fouling and chemical cleaning cycles. Sep. Purif. Technol. 113, 42–50 (2013). https://doi.org/10.1016/j.seppur.2013.04.011

    Article  CAS  Google Scholar 

  78. E. Nagy, Nanofiltration, basic equations mass transport through a membrane layer. 249–266 (2012). https://doi.org/10.1016/b978-0-12-416025-5.00010-7

  79. H. Yacubowicz, J. Yacubowicz, Nanofiltration: Properties and uses. Filtr. Sep. 42, 16–21 (2005). https://doi.org/10.1016/S0015-1882(05)70617-0

    Article  CAS  Google Scholar 

  80. L. Braeken, B. Bettens, K. Boussu, P. Van der Meeren, J. Cocquyt, J. Vermant, B. Van der Bruggen, Transport mechanisms of dissolved organic compounds in aqueous solution during nanofiltration. J. Memb. Sci. 279, 311–319 (2006). https://doi.org/10.1016/j.memsci.2005.12.024

    Article  CAS  Google Scholar 

  81. A.G. Fane, C.Y. Tang, R. Wang, Membrane technology for water: Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis. Treatise Water Sci. 4, 301–335 (2011). https://doi.org/10.1016/B978-0-444-53199-5.00091-9

    Article  CAS  Google Scholar 

  82. Z. Berk, Z. Berk, Chapter 10 – Membrane processes. Food Process Eng. Technol. 233–257 (2009). https://doi.org/10.1016/B978-0-12-373660-4.00010-7

  83. J.M.M. Peeters, M.H.V. Mulder, H. Strathmann, Streaming potential measurements as a characterization method for nanofiltration membranes. Colloids Surf. A Physicochem. Eng. Asp. 150, 247–259 (1999). https://doi.org/10.1016/S0927-7757(98)00828-0

    Article  CAS  Google Scholar 

  84. A.R.D. Verliefde, E.R. Cornelissen, S.G.J. Heijman, J.Q.J.C. Verberk, G.L. Amy, B. Van Der Bruggen, J.C. Van Dijk, The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. J. Memb. Sci. 322, 52–66 (2008). https://doi.org/10.1016/j.memsci.2008.05.022

    Article  CAS  Google Scholar 

  85. H. Lin, M. Zhang, F. Wang, F. Meng, B.Q. Liao, H. Hong, J. Chen, W. Gao, A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. J. Memb. Sci. 460, 110–125 (2014). https://doi.org/10.1016/j.memsci.2014.02.034

    Article  CAS  Google Scholar 

  86. Q. She, R. Wang, A.G. Fane, C.Y. Tang, Membrane fouling in osmotically driven membrane processes: A review. J. Memb. Sci. 499, 201–233 (2016). https://doi.org/10.1016/j.memsci.2015.10.040

    Article  CAS  Google Scholar 

  87. M. Badruzzaman, S. Aramco, Pretreatment for seawater reverse osmosis: Existing plant performance and selection guidance. (2018). https://doi.org/10.13140/RG.2.2.31363.14889

  88. W.L. Ang, D. Nordin, A.W. Mohammad, A. Benamor, N. Hilal, Effect of membrane performance including fouling on cost optimization in brackish water desalination process. Chem. Eng. Res. Des. 117, 401–413 (2017). https://doi.org/10.1016/j.cherd.2016.10.041

    Article  CAS  Google Scholar 

  89. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009). https://doi.org/10.1016/j.watres.2009.03.010

    Article  CAS  Google Scholar 

  90. K.V. (Klaus-V. Peinemann, P. Nunes, S.P. (Suzana P. Nunes, Membrane technology: Volume 4: Membranes for Water Treatment. 4, (2010). https://doi.org/10.1002/9783527631407

  91. C.Y. Tang, T.H. Chong, A.G. Fane, Colloidal interactions and fouling of NF and RO membranes: A review. Adv. Colloid Interface Sci. 164, 126–143 (2011). https://doi.org/10.1016/j.cis.2010.10.007

    Article  CAS  Google Scholar 

  92. S. Li, J. Luo, X. Hang, S. Zhao, Y. Wan, Removal of polycyclic aromatic hydrocarbons by nanofiltration membranes : Rejection and fouling mechanisms. J. Memb. Sci. 582, 264–273 (2019). https://doi.org/10.1016/j.memsci.2019.04.008

    Article  CAS  Google Scholar 

  93. P. Xu, C. Bellona, J.E. Drewes, Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilot-scale investigations. J. Memb. Sci. 353, 111–121 (2010). https://doi.org/10.1016/j.memsci.2010.02.037

    Article  CAS  Google Scholar 

  94. L. Weinrich, M. LeChevallier, C.N. Haas, Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment. Water Res. 101, 203–213 (2016). https://doi.org/10.1016/j.watres.2016.05.075

    Article  CAS  Google Scholar 

  95. J.N. Hakizimana, B. Gourich, C. Vial, P. Drogui, A. Oumani, J. Naja, L. Hilali, Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis. Desalination 393, 90–101 (2016). https://doi.org/10.1016/j.desal.2015.12.025

    Article  CAS  Google Scholar 

  96. S. Tul Muntha, A. Kausar, M. Siddiq, Advances in Polymeric Nanofiltration Membrane: A Review. Polym. - Plast. Technol. Eng. 56, 841–856 (2017). https://doi.org/10.1080/03602559.2016.1233562

    Article  CAS  Google Scholar 

  97. W. Ye, N.J. Bernstein, J. Lin, J. Jordens, S. Zhao, C.Y. Tang, B. Van der Bruggen, Theoretical and experimental study of organic fouling of loose nanofiltration membrane. J. Taiwan Inst. Chem. Eng. 93, 509–518 (2018). https://doi.org/10.1016/j.jtice.2018.08.029

    Article  CAS  Google Scholar 

  98. K. Chon, J. Cho, Fouling behavior of dissolved organic matter in nanofiltration membranes from a pilot-scale drinking water treatment plant: An autopsy study, Elsevier B.V. (2016). https://doi.org/10.1016/j.cej.2016.03.057

  99. M.A. Sari, S. Chellam, Relative Contributions of Organic and Inorganic Fouling during Nanofiltration of Inland Brackish Surface Wate. J. Memb. Sci. (2016). https://doi.org/10.1016/j.memsci.2016.10.005

    Article  Google Scholar 

  100. W. Stumm, Aquatic colloids as chemical reactants: surface structure and reactivity, ELSEVIER SCIENCE PUBLISHERS LTD, 1993. https://doi.org/10.1016/b978-1-85861-038-2.50004-8

  101. I. Buffle, G.G. Leppard, Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ. Sci. Technol. 29, 2169–2175 (1995). https://doi.org/10.1021/es00009a004

    Article  CAS  Google Scholar 

  102. K. Boussu, A. Belpaire, A. Volodin, C. Van Haesendonck, P. Van der Meeren, C. Vandecasteele, B. Van der Bruggen, Influence of membrane and colloid characteristics on fouling of nanofiltration membranes. J. Memb. Sci. 289, 220–230 (2007). https://doi.org/10.1016/j.memsci.2006.12.001

    Article  CAS  Google Scholar 

  103. H.C. Flemming, Reverse osmosis membrane biofouling. Exp. Therm. Fluid Sci. 14, 382–391 (1997). https://doi.org/10.1016/S0894-1777(96)00140-9

    Article  CAS  Google Scholar 

  104. S. Anand, D. Singh, M. Avadhanula, S. Marka, Development and control of bacterial biofilms on dairy processing membranes. Compr. Rev. Food Sci. Food Saf. 13, 18–33 (2014). https://doi.org/10.1111/1541-4337.12048

    Article  CAS  Google Scholar 

  105. H.F. Ridgway, A. Kelly, C. Justice, B.H. Olson, Microbial fouling of reverse-osmosis membranes used in advanced wastewater treatment technology: Chemical, bacteriological, and ultrastructural analyses. Appl. Environ. Microbiol. 45, 1066–1084 (1983). https://doi.org/10.1128/aem.45.3.1066-1084.1983

    Article  CAS  Google Scholar 

  106. Y. Baek, J. Yu, S.H. Kim, S. Lee, J. Yoon, Effect of surface properties of reverse osmosis membranes on biofouling occurrence under filtration conditions. J. Memb. Sci. 382, 91–99 (2011). https://doi.org/10.1016/j.memsci.2011.07.049

    Article  CAS  Google Scholar 

  107. M. Herzberg, M. Elimelech, Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure. J. Memb. Sci. 295, 11–20 (2007). https://doi.org/10.1016/j.memsci.2007.02.024

    Article  CAS  Google Scholar 

  108. C.V. Manalo, M. Ohno, T. Okuda, S. Nakai, W. Nishijima, Rapid novel test for the determination of biofouling potential on reverse osmosis membranes. Water Sci. Technol. 73, 2978–2985 (2016). https://doi.org/10.2166/wst.2016.159

    Article  CAS  Google Scholar 

  109. H. Ivnitsky, I. Katz, D. Minz, E. Shimoni, Y. Chen, J. Tarchitzky, R. Semiat, C.G. Dosoretz, Characterization of membrane biofouling in nanofiltration processes of wastewater treatment. Desalination 185, 255–268 (2005). https://doi.org/10.1016/j.desal.2005.03.081

    Article  CAS  Google Scholar 

  110. O. Habimana, A.J.C. Semião, E. Casey, The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes. J. Memb. Sci. 454, 82–96 (2014). https://doi.org/10.1016/j.memsci.2013.11.043

    Article  CAS  Google Scholar 

  111. J.S. Vrouwenvelder, S.A. Manolarakis, J.P. van der Hoek, J.A.M. van Paassen, W.G.J. van der Meer, J.M.C. van Agtmaal, H.D.M. Prummel, J.C. Kruithof, M.C.M. van Loosdrecht, Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. Water Res. 42, 4856–4868 (2008). https://doi.org/10.1016/j.watres.2008.09.002

    Article  CAS  Google Scholar 

  112. D. Monroe, Looking for chinks in the armor of bacterial biofilms. 272 (2007) https://doi.org/10.1371/journal.pbio.0050307

  113. S. Wang, G. Guillen, E.M.V. Hoek, Direct observation of microbial adhesion to membranes. Environ. Sci. Technol. 39, 6461–6469 (2005). https://doi.org/10.1021/es050188s

    Article  CAS  Google Scholar 

  114. M. Kostakioti, M. Hadjifrangiskou, S.J. Hultgren, Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 3, 1–24 (2013). https://doi.org/10.1101/cshperspect.a010306

    Article  CAS  Google Scholar 

  115. H.C. Flemming, T.R. Neu, D.J. Wozniak, The EPS matrix: The “House of Biofilm Cells.” J. Bacteriol. 189, 7945–7947 (2007). https://doi.org/10.1128/JB.00858-07

    Article  CAS  Google Scholar 

  116. G.O. Toole, H.B. Kaplan, R. Kolter, Annu. Rev. Microbiol. 2000.54:49–79, (2000) 49–79

  117. C. Dreszer, A.D. Wexler, S. Drusová, T. Overdijk, A. Zwijnenburg, H.C. Flemming, J.C. Kruithof, J.S. Vrouwenvelder, In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: Formation, structure, detachment and impact of flux change. Water Res. 67, 243–254 (2014). https://doi.org/10.1016/j.watres.2014.09.006

    Article  CAS  Google Scholar 

  118. N. Qureshi, B.A. Annous, T.C. Ezeji, P. Karcher, I.S. Maddox, Biofilm reactors for industrial bioconversion process: Employing potential of enhanced reaction rates. Microb. Cell Fact. 4, 1–21 (2005). https://doi.org/10.1186/1475-2859-4-24

    Article  CAS  Google Scholar 

  119. J.C. Wang, J. Cordero, Y. Sun, M. Aranke, R. Wolcott, J.A. Colmer-Hamood, A.N. Hamood, Planktonic growth of pseudomonas aeruginosa around a dual-species biofilm supports the growth of Fusobacterium nucleatum within that biofilm. Int. J. Otolaryngol. 2017, 1–12 (2017). https://doi.org/10.1155/2017/3037191

    Article  Google Scholar 

  120. S.A. Rice, K.S. Koh, S.Y. Queck, M. Labbate, K.W. Lam, S. Kjelleberg, Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J. Bacteriol. 187, 3477–3485 (2005). https://doi.org/10.1128/JB.187.10.3477-3485.2005

    Article  CAS  Google Scholar 

  121. Z.L. P. Stoodley, J. Boyle, A.B. Cunningham, I. Dodds, H.M. Lappin-Scott, Biofilm structure and influence on biofouling under laminar and turbulent flows. Methods. 1–10 (1998)

  122. M.H. Muhammad, A.L. Idris, X. Fan, Y. Guo, Y. Yu, X. Jin, J. Qiu, X. Guan, T. Huang, Beyond risk: Bacterial biofilms and their regulating approaches. Front. Microbiol. 11, 1–20 (2020). https://doi.org/10.3389/fmicb.2020.00928

    Article  Google Scholar 

  123. P.R. Gogate, Application of cavitational reactors for water disinfection: Current status and path forward. J. Environ. Manage. 85, 801–815 (2007). https://doi.org/10.1016/j.jenvman.2007.07.001

    Article  CAS  Google Scholar 

  124. M. Polanska, K. Huysman, C. Van Keer, Investigation of assimilable organic carbon (AOC) in flemish drinking water. Water Res. 39, 2259–2266 (2005). https://doi.org/10.1016/j.watres.2005.04.015

    Article  CAS  Google Scholar 

  125. L.E. Applegate, C.W. Erkenbrecher, Monitoring and control of biological activity in Permasep® seawater RO plants. Desalination 65, 331–359 (1987). https://doi.org/10.1016/0011-9164(87)90141-X

    Article  CAS  Google Scholar 

  126. S.D. Richardson, Disinfection by-products and other emerging contaminants in drinking water, TrAC -. Trends Anal. Chem. 22, 666–684 (2003). https://doi.org/10.1016/S0165-9936(03)01003-3

    Article  CAS  Google Scholar 

  127. F. Hammes, S. Meylan, E. Salhi, O. Köster, T. Egli, U. von Gunten, Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. Water Res. 41, 1447–1454 (2007). https://doi.org/10.1016/j.watres.2007.01.001

    Article  CAS  Google Scholar 

  128. G.D. Harris, V.D. Adams, D.L. Sorensen, R.R. Dupont, Influence of photoreactivation and water quality on ultraviolet disinfection of secondary municipal wastewater. J. Water Pollut. Control Fed. 59, 781–787 (1987)

    CAS  Google Scholar 

  129. J.A. Parker, J.L. Darby, Particle-associated coliform in secondary effluents: shielding from ultraviolet light disinfection. Water Environ. Res. 67, 1065–1075 (1995). https://doi.org/10.2175/106143095x133310

    Article  CAS  Google Scholar 

  130. S.F. Anis, R. Hashaikeh, N. Hilal, Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination 452, 159–195 (2019). https://doi.org/10.1016/j.desal.2018.11.006

    Article  CAS  Google Scholar 

  131. S. Nouhi, H.M. Kwaambwa, P. Gutfreund, A.R. Rennie, Comparative study of flocculation and adsorption behaviour of water treatment proteins from Moringa peregrina and Moringa oleifera seeds. Sci. Rep. 9, 1–9 (2019). https://doi.org/10.1038/s41598-019-54069-2

    Article  CAS  Google Scholar 

  132. K. Ibn Abdul Hamid, P. Sanciolo, S. Gray, M. Duke, S. Muthukumaran, Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling. Water Res. 126, 308–318 (2017). https://doi.org/10.1016/j.watres.2017.09.012

    Article  CAS  Google Scholar 

  133. H.J. Yang, H.S. Kim, Effect of coagulation on MF/UF for removal of particles as a pretreatment in seawater desalination. Desalination 247, 45–52 (2009). https://doi.org/10.1016/j.desal.2008.12.011

    Article  CAS  Google Scholar 

  134. A. Venault, Y. Chang, D.M. Wang, D. Bouyer, A. Higuchi, J.Y. Lai, PEGylation of anti-biofouling polysulfone membranes via liquid- and vapor-induced phase separation processing. J. Memb. Sci. 403–404, 47–57 (2012). https://doi.org/10.1016/j.memsci.2012.02.019

    Article  CAS  Google Scholar 

  135. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668 (2000). https://doi.org/10.1002/1097-4636(20001215)52:4%3c662::aid-jbm10%3e3.0.co;2-3

    Article  CAS  Google Scholar 

  136. G. Borkow, J. Gabbay, Copper as a Biocidal Tool. Curr. Med. Chem. 12, 2163–2175 (2005). https://doi.org/10.2174/0929867054637617

    Article  CAS  Google Scholar 

  137. C.X. Liu, D.R. Zhang, Y. He, X.S. Zhao, R. Bai, Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and anti-bacteria approaches. J. Memb. Sci. 346, 121–130 (2010). https://doi.org/10.1016/j.memsci.2009.09.028

    Article  CAS  Google Scholar 

  138. A. Dror-Ehre, H. Mamane, T. Belenkova, G. Markovich, A. Adin, Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival. J. Colloid Interface Sci. 339, 521–526 (2009). https://doi.org/10.1016/j.jcis.2009.07.052

    Article  CAS  Google Scholar 

  139. T. Tashiro, Antibacterial and bacterium adsorbing macromolecules. Macromol. Mater. Eng. 286, 63–87 (2001). https://doi.org/10.1002/1439-2054(20010201)286:2%3c63::AID-MAME63%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  140. M. Khayet, J.P.G. Villaluenga, J.L. Valentin, M.A. López-Manchado, J.I. Mengual, B. Seoane, Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: Characterization and application in pervaporation. Polymer (Guildf). 46, 9881–9891 (2005). https://doi.org/10.1016/j.polymer.2005.07.081

    Article  CAS  Google Scholar 

  141. T.H. Bae, T.M. Tak, Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Memb. Sci. 249, 1–8 (2005). https://doi.org/10.1016/j.memsci.2004.09.008

    Article  CAS  Google Scholar 

  142. D.J. Lin, C.L. Chang, F.M. Huang, L.P. Cheng, Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiC1o4/water/DMF/PVDF system. Polymer (Guildf). 44, 413–422 (2002). https://doi.org/10.1016/S0032-3861(02)00731-0

    Article  Google Scholar 

  143. A. Bottino, G. Capannelli, A. Comite, Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 146, 35–40 (2002). https://doi.org/10.1016/S0011-9164(02)00469-1

    Article  CAS  Google Scholar 

  144. L. Yan, Y.S. Li, C.B. Xiang, Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer (Guildf). 46, 7701–7706 (2005). https://doi.org/10.1016/j.polymer.2005.05.155

    Article  CAS  Google Scholar 

  145. N. Hilal, L. Al-Khatib, B.P. Atkin, V. Kochkodan, N. Potapchenko, Photochemical modification of membrane surfaces for (bio)fouling reduction: A nano-scale study using AFM. Desalination 158, 65–72 (2003). https://doi.org/10.1016/S0011-9164(03)00434-X

    Article  CAS  Google Scholar 

  146. H.L. Zhang, Y.B. Gao, J.G. Gai, Guanidinium-functionalized nanofiltration membranes integrating anti-fouling and antimicrobial effects. J. Mater. Chem. A. 6, 6442–6454 (2018). https://doi.org/10.1039/c8ta00342d

    Article  CAS  Google Scholar 

  147. L. Tang, K.J.T. Livi, K.L. Chen, Polysulfone membranes modified with bioinspired polydopamine and silver nanoparticles formed in situ to mitigate biofouling. Environ. Sci. Technol. Lett. 2, 59–65 (2015). https://doi.org/10.1021/acs.estlett.5b00008

    Article  CAS  Google Scholar 

  148. H.L. Zhang, B.H. Liu, M. Yang, P. Zhang, J.G. Gai, Sulfaguanidine nanofiltration active layer towards anti-adhesive and antimicrobial attributes for desalination and dye removal. RSC Adv. 9, 20715–20727 (2019). https://doi.org/10.1039/c9ra03340h

    Article  CAS  Google Scholar 

  149. S.N. Jagannadh, H.S. Muralidhara, Electrokinetics Methods to Control Membrane Fouling. Ind. Eng. Chem. Res. 35, 1133–1140 (1996). https://doi.org/10.1021/ie9503712

    Article  CAS  Google Scholar 

  150. J.C. Te Lin, D.J. Lee, C. Huang, Membrane fouling mitigation: Membrane cleaning. Sep. Sci. Technol. 45, 858–872 (2010). https://doi.org/10.1080/01496391003666940

    Article  CAS  Google Scholar 

  151. S.S. Madaeni, T. Mohamamdi, M.K. Moghadam, Chemical cleaning of reverse osmosis membranes. Desalination 134, 77–82 (2001). https://doi.org/10.1016/S0011-9164(01)00117-5

    Article  CAS  Google Scholar 

  152. L. Xiao, D.M. Davenport, L. Ormsbee, D. Bhattacharyya, Polymerization and functionalization of membrane pores for water related applications. Ind. Eng. Chem. Res. 54, 4174–4182 (2015). https://doi.org/10.1021/ie504149t

    Article  CAS  Google Scholar 

  153. A. Schulze, M. Went, A. Prager, Membrane functionalization with hyperbranched polymers. Materials (Basel). 9 (2016). https://doi.org/10.3390/ma9080706

  154. H. Chakhtouna, N. Zari, H. Benzeid, A. el K. Qaiss, R. Bouhfid, Hybrid Nanocomposites based on Graphene and Titanium Dioxide for Wastewater Treatment Keywords, in: Graphene and Nanoparticles Hybrid Nanocomposites. 213–238 (2021). https://doi.org/10.1007/978-981-33-4988-9_8

  155. R. Wang, D. Chen, Q. Wang, Y. Ying, W. Gao, L. Xie, Recent advances in applications of carbon nanotubes for desalination: A review. Nanomaterials 10, 1–28 (2020). https://doi.org/10.3390/nano10061203

    Article  CAS  Google Scholar 

  156. N. Song, X. Gao, Z. Ma, X. Wang, Y. Wei, C. Gao, A review of graphene-based separation membrane: Materials, characteristics, preparation and applications. Desalination 437, 59–72 (2018). https://doi.org/10.1016/j.desal.2018.02.024

    Article  CAS  Google Scholar 

  157. H. Chakhtouna, H. Benzeid, N. Zari, A. el kacem Qaiss, R. Bouhfid, Functional CoFe2O4-modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water. Sep. Purif. Technol. 266 (2021). https://doi.org/10.1016/j.seppur.2021.118592

  158. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011). https://doi.org/10.1021/nn202451x

    Article  CAS  Google Scholar 

  159. S. Romero-Vargas Castrillón, F. Perreault, A.F. De Faria, M. Elimelech, Interaction of graphene oxide with bacterial cell membranes: Insights from force spectroscopy. Environ. Sci. Technol. Lett. 2, 112–117 (2015). https://doi.org/10.1021/acs.estlett.5b00066

    Article  CAS  Google Scholar 

  160. A.M. Pinto, I.C. Gonçalves, F.D. Magalhães, Graphene-based materials biocompatibility: A review. Colloids Surf. B Biointerfaces 111, 188–202 (2013). https://doi.org/10.1016/j.colsurfb.2013.05.022

    Article  CAS  Google Scholar 

  161. P. Kumar, P. Huo, R. Zhang, B. Liu, Antibacterial Properties of Graphene-Based Nanomaterials. EurasianUnionScientists. 1, 31–33 (2020)

    Google Scholar 

  162. R. Bi, Q. Zhang, R. Zhang, Y. Su, Z. Jiang, Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. J. Memb. Sci. 553, 17–24 (2018). https://doi.org/10.1016/j.memsci.2018.02.010

    Article  CAS  Google Scholar 

  163. S. Bano, A. Mahmood, S.J. Kim, K.H. Lee, Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J. Mater. Chem. A. 3, 2065–2071 (2015). https://doi.org/10.1039/c4ta03607g

    Article  CAS  Google Scholar 

  164. C. Wang, M.J. Park, D.H. Seo, H.K. Shon, Inkjet printing of graphene oxide and dopamine on nanofiltration membranes for improved anti-fouling properties and chlorine resistance. Sep. Purif. Technol. 254, 117604 (2021). https://doi.org/10.1016/j.seppur.2020.117604

    Article  CAS  Google Scholar 

  165. X.F. Sun, J. Qin, P.F. Xia, B.B. Guo, C.M. Yang, C. Song, S.G. Wang, Graphene oxide-silver nanoparticle membrane for biofouling control and water purification. Chem. Eng. J. 281, 53–59 (2015). https://doi.org/10.1016/j.cej.2015.06.059

    Article  CAS  Google Scholar 

  166. P. Gunawan, C. Guan, X. Song, Q. Zhang, S.S.J. Leong, C. Tang, Y. Chen, M.B. Chan-Park, M. Chang, K. Wook, RXu. Wang, Hollow fiber membrane decorated with Ag / MWNTs: Toward effective water. ACS Nano. 5, 10033–10040 (2011)

    Article  CAS  Google Scholar 

  167. K. Ko, Y.J. Yu, M.J. Kim, J. Kweon, H. Chung, Improvement in fouling resistance of silver-graphene oxide coated polyvinylidene fluoride membrane prepared by pressurized filtration. Sep. Purif. Technol. 194, 161–169 (2018). https://doi.org/10.1016/j.seppur.2017.11.016

    Article  CAS  Google Scholar 

  168. M. Yasuyuki, K. Kunihiro, S. Kurissery, N. Kanavillil, Y. Sato, Y. Kikuchi, Antibacterial properties of nine pure metals: A laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling 26, 851–858 (2010). https://doi.org/10.1080/08927014.2010.527000

    Article  CAS  Google Scholar 

  169. G. Vimbela, S. Ngo, C. Fraze, L. Yang, D.A. Stout, Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomedicine. 13, 6497–6498 (2018). https://doi.org/10.2147/ijn.s183907

    Article  Google Scholar 

  170. S. Maharubin, Y. Zhou, G.Z. Tan, Development and Investigation on a Silver Nanoparticle-Incorporated Electrofiltration System for Biofouling Control. IEEE Trans. Nanotechnol. 17, 948–954 (2018). https://doi.org/10.1109/TNANO.2018.2832210

    Article  CAS  Google Scholar 

  171. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007). https://doi.org/10.1128/AEM.02218-06

    Article  CAS  Google Scholar 

  172. N. Hachicho, P. Hoffmann, K. Ahlert, H.J. Heipieper, Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiol. Lett. 355, 71–77 (2014). https://doi.org/10.1111/1574-6968.12460

    Article  CAS  Google Scholar 

  173. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver nanoparticles as potential antibacterial agents. Molecules 20, 8856–8874 (2015). https://doi.org/10.3390/molecules20058856

    Article  CAS  Google Scholar 

  174. J. Yin, Y. Yang, Z. Hu, B. Deng, Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J. Memb. Sci. 441, 73–82 (2013). https://doi.org/10.1016/j.memsci.2013.03.060

    Article  CAS  Google Scholar 

  175. R. Manjumeena, D. Duraibabu, J. Sudha, P.T. Kalaichelvan, Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: An enhanced eco-friendly water disinfection approach, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 49, 1125–1133 (2014). https://doi.org/10.1080/10934529.2014.897149

    Article  CAS  Google Scholar 

  176. N. Zari, H. Mohammedi, A. Amine, M.M. Ennaji, DNA hydrolysis and voltammetric determination of guanine and adenine using different electrodes. Anal. Lett. 40, 1698–1713 (2007). https://doi.org/10.1080/00032710701298479

    Article  CAS  Google Scholar 

  177. S. Asapu, S. Pant, P. Majid, I.C. Escobar, C.L. Gruden, Study of copper-charged membranes for control of fouling due to bacteria and algae organic matter. J. Water Reuse Desalin. 5, 516–527 (2015). https://doi.org/10.2166/wrd.2015.001

    Article  CAS  Google Scholar 

  178. R. Guha, B. Xiong, M. Geitner, T. Moore, T.K. Wood, D. Velegol, M. Kumar, Reactive micromixing eliminates fouling and concentration polarization in reverse osmosis membranes. J. Membr. Schience. 542, 8–17 (2017)

    Article  CAS  Google Scholar 

  179. W. Ma, A. Soroush, T. Van Anh Luong, G. Brennan, M.S. Rahaman, B. Asadishad, N. Tufenkji, Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation. Water Res. 99, 188–199 (2016). https://doi.org/10.1016/j.watres.2016.04.042

    Article  CAS  Google Scholar 

  180. H. Chakhtouna, H. Benzeid, N. Zari, R. Bouhfid, A. el kacem Qaiss, Recent progress on Ag/TiO2 photocatalysts: Photocatalytic and bactericidal behaviors. Environ Sci Pollut Res 28, 44638–44666 (2021). https://doi.org/10.1007/s11356-021-14996-y

    Article  CAS  Google Scholar 

  181. A. Kubacka, M.S. Diez, D. Rojo, R. Bargiela, S. Ciordia, I. Zapico, J.P. Albar, C. Barbas, V.A.P. Martins Dos Santos, M. Fernández-García, M. Ferrer, Understanding the antimicrobial mechanism of TiO2 -based nanocomposite films in a pathogenic bacterium. Sci. Rep. 4, 1–9 (2014). https://doi.org/10.1038/srep04134

    Article  CAS  Google Scholar 

  182. V. Vatanpour, S. Siavash, R. Moradian, S. Zinadini, B. Astinchap, Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Purif. Technol. 90, 69–82 (2012). https://doi.org/10.1016/j.seppur.2012.02.014

    Article  CAS  Google Scholar 

  183. Z. Habib, S.J. Khan, N.M. Ahmad, H.M.A. Shahzad, Y. Jamal, I. Hashmi, Antibacterial behaviour of surface modified composite polyamide nanofiltration (NF) membrane by immobilizing Ag-doped TiO2 nanoparticles. Environ. Technol. (United Kingdom) 41, 3657–3669 (2020). https://doi.org/10.1080/09593330.2019.1617355

    Article  CAS  Google Scholar 

  184. Y.T. Chung, E. Mahmoudi, A.W. Mohammad, A. Benamor, D. Johnson, N. Hilal, Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control. Desalination 402, 123–132 (2017). https://doi.org/10.1016/j.desal.2016.09.030

    Article  CAS  Google Scholar 

  185. D. Shanthana Lakshmi, S. Jaiswar, M. saxena, F. Tasselli, H.D. Raval, Preparation and performance of biofouling resistant PAN/chitosan hollow fiber membranes. 3 Biotech. 7, 224 (2017). https://doi.org/10.1007/s13205-017-0798-2

  186. T. Istirokhatun, N. Rokhati, D. Nurlaeli, N.N. Arifianingsih, S. Sudarno, H. Susanto, Characteristics, biofouling properties and filtration performance of cellulose/chitosan membranes. J. Environ. Sci. Technol. 10, 56–67 (2017). https://doi.org/10.3923/jest.2017.56.67

    Article  CAS  Google Scholar 

  187. Y. Liu, Y. Su, X. Zhao, Y. Li, R. Zhang, Z. Jiang, Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. J. Memb. Sci. 486, 195–206 (2015). https://doi.org/10.1016/j.memsci.2015.03.045

    Article  CAS  Google Scholar 

  188. J. Xu, H. Lee, Anti-biofouling strategies for long-term continuous use of implantable biosensors. Chemosensors. 8, 1–29 (2020). https://doi.org/10.3390/chemosensors8030066

    Article  CAS  Google Scholar 

  189. Y.N. Chou, F. Sun, H.C. Hung, P. Jain, A. Sinclair, P. Zhang, T. Bai, Y. Chang, T.C. Wen, Q. Yu, S. Jiang, Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media. Acta Biomater. 40, 31–37 (2016). https://doi.org/10.1016/j.actbio.2016.04.023

    Article  CAS  Google Scholar 

  190. Q.F. An, W.D. Sun, Q. Zhao, Y.L. Ji, C.J. Gao, Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers. J. Memb. Sci. 431, 171–179 (2013). https://doi.org/10.1016/j.memsci.2012.12.043

    Article  CAS  Google Scholar 

  191. D. Ponnamma, N. Ninan, S. Thomas, Carbon Nanotube Tube Filled Polymer Nanocomposites and Their Applications in Tissue Engineering. Elsevier Ltd. (2018). https://doi.org/10.1016/b978-0-08-101971-9.00014-4

    Article  Google Scholar 

  192. L.D. Tijing, Y.C. Woo, M. Yao, J. Ren, H.K. Shon, Electrospinning for membrane fabrication: Strategies and applications. in: Compr. Membr. Sci. Eng., Elsevier Ltd. 418–444 (2017). https://doi.org/10.1016/b978-0-12-409547-2.12262-0

  193. S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: Solving global issues. Mater. Today. 9, 40–50 (2006). https://doi.org/10.1016/S1369-7021(06)71389-X

    Article  CAS  Google Scholar 

  194. M.K. Purkait, M.K. Sinha, P. Mondal, R. Singh, Introduction Membr. (2018). https://doi.org/10.1016/B978-0-12-813961-5.00001-2

    Article  Google Scholar 

  195. A.K. Hołda, I.F.J. Vankelecom, Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 132, 1–17 (2015). https://doi.org/10.1002/app.42130

    Article  CAS  Google Scholar 

  196. Y. Song, J.B. Fan, S. Wang, Recent progress in interfacial polymerization. Mater. Chem. Front. 1, 1028–1040 (2017). https://doi.org/10.1039/c6qm00325g

    Article  CAS  Google Scholar 

  197. F. Zhang, Jb. Fan, S. Wang, Interfacial polymerization: From chemistry to functional materials. Angew. Chemie - Int. Ed. 59, 21840–21856 (2020). https://doi.org/10.1002/anie.201916473

    Article  CAS  Google Scholar 

  198. E. Guzmán, A. Mateos-Maroto, M. Ruano, F. Ortega, R.G. Rubio, Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Adv. Colloid Interface Sci. 249, 290–307 (2017). https://doi.org/10.1016/j.cis.2017.04.009

    Article  CAS  Google Scholar 

  199. J.E. Gu, S. Lee, C.M. Stafford, J.S. Lee, W. Choi, B.Y. Kim, K.Y. Baek, E.P. Chan, J.Y. Chung, J. Bang, J.H. Lee, Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Adv. Mater. 25, 4778–4782 (2013). https://doi.org/10.1002/adma.201302030

    Article  CAS  Google Scholar 

  200. E. Nagy, Nanofiltration, basic equations mass transport through a membrane layer. 417–428 (2019). https://doi.org/10.1016/b978-0-12-813722-2.00015-7

  201. C. Kaya, G. Sert, N. Kabay, M. Arda, M. Yüksel, Ö. Egemen, Pre-treatment with nanofiltration (NF) in seawater desalination-Preliminary integrated membrane tests in Urla, Turkey. Desalination 369, 10–17 (2015). https://doi.org/10.1016/j.desal.2015.04.029

    Article  CAS  Google Scholar 

  202. C. Yu, J. Wu, A.E. Contreras, Q. Li, Control of nanofiltration membrane biofouling by Pseudomonas aeruginosa using d-tyrosine. J. Memb. Sci. 423–424, 487–494 (2012). https://doi.org/10.1016/j.memsci.2012.08.051

    Article  CAS  Google Scholar 

  203. J. Zheng, M. Li, K. Yu, J. Hu, X. Zhang, L. Wang, Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property. J. Memb. Sci. 524, 344–353 (2017). https://doi.org/10.1016/j.memsci.2016.11.032

    Article  CAS  Google Scholar 

  204. Y.C. Chiang, Y. Chang, C.J. Chuang, R.C. Ruaan, A facile zwitterionization in the interfacial modification of low bio-fouling nanofiltration membranes. J. Memb. Sci. 389, 76–82 (2012). https://doi.org/10.1016/j.memsci.2011.10.017

    Article  CAS  Google Scholar 

  205. L. Ren, J. Chen, Q. Lu, J. Han, H. Wu, Anti-biofouling nanofiltration membrane constructed by in-situ photo-grafting bactericidal and hydrophilic polymers. J. Memb. Sci. 617, 118658 (2021). https://doi.org/10.1016/j.memsci.2020.118658

    Article  CAS  Google Scholar 

  206. S. Liu, F. Fang, J. Wu, K. Zhang, The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles. Desalination 375, 121–128 (2015). https://doi.org/10.1016/j.desal.2015.08.007

    Article  CAS  Google Scholar 

  207. X. Li, Y. Cao, H. Yu, G. Kang, X. Jie, Z. Liu, Q. Yuan, A novel composite nanofiltration membrane prepared with PHGH and TMC by interfacial polymerization. J. Memb. Sci. 466, 82–91 (2014). https://doi.org/10.1016/j.memsci.2014.04.034

    Article  CAS  Google Scholar 

  208. P.S. Zhong, N. Widjojo, T.S. Chung, M. Weber, C. Maletzko, Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater. J. Memb. Sci. 417–418, 52–60 (2012). https://doi.org/10.1016/j.memsci.2012.06.013

    Article  CAS  Google Scholar 

  209. T. Tsuru, T. Sudou, S.I. Kawahara, T. Yoshioka, M. Asaeda, Permeation of liquids through inorganic nanofiltration membranes. J. Colloid Interface Sci. 228, 292–296 (2000). https://doi.org/10.1006/jcis.2000.6955

    Article  CAS  Google Scholar 

  210. J.A. Whu, B.C. Baltzis, K.K. Sirkar, Nanofiltration studies of larger organic microsolutes in methanol solutions. J. Memb. Sci. 170, 159–172 (2000). https://doi.org/10.1016/S0376-7388(99)00374-9

    Article  CAS  Google Scholar 

  211. X.Q. Cheng, Y. Liu, Z. Guo, L. Shao, Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics. J. Memb. Sci. 493, 156–166 (2015). https://doi.org/10.1016/j.memsci.2015.06.048

    Article  CAS  Google Scholar 

  212. X.D. Weng, Y.L. Ji, R. Ma, F.Y. Zhao, Q.F. An, C.J. Gao, Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation. J. Memb. Sci. 510, 122–130 (2016). https://doi.org/10.1016/j.memsci.2016.02.070

    Article  CAS  Google Scholar 

  213. Y.L. Ji, Q.F. An, X.D. Weng, W.S. Hung, K.R. Lee, C.J. Gao, Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation. J. Memb. Sci. 548, 559–571 (2018). https://doi.org/10.1016/j.memsci.2017.11.057

    Article  CAS  Google Scholar 

  214. O. Acosta, F. Vaillant, A.M. Pérez, M. Dornier, Concentration of polyphenolic compounds in blackberry (Rubus Adenotrichos Schltdl.) juice by nanofiltration. J. Food Process Eng. 40, 1–7 (2017). https://doi.org/10.1111/jfpe.12343

    Article  CAS  Google Scholar 

  215. A.M. Avram, P. Morin, C. Brownmiller, L.R. Howard, A. Sengupta, S.R. Wickramasinghe, Concentrations of polyphenols from blueberry pomace extract using nanofiltration. Food Bioprod. Process. 106, 91–101 (2017). https://doi.org/10.1016/j.fbp.2017.07.006

    Article  CAS  Google Scholar 

  216. X. Li, W. Cai, T. Wang, Z. Wu, J. Wang, X. He, J. Li, AF2400/PTFE composite membrane for hexane recovery during vegetable oil production. Sep. Purif. Technol. 181, 223–229 (2017). https://doi.org/10.1016/j.seppur.2017.02.051

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by MAScIR, Moroccan Foundation for Advanced Science, Innovation, and Research.

Author information

Authors and Affiliations

Authors

Contributions

Brahim El Allaoui: Conceptualization, data curation, methodology, writing–original draft

Hanane Chakhtouna: Conceptualization, data curation, methodology, writing–original draft.

Nadia Zari: Supervision, Writing—review & editing.

Rachid Bouhfid: Supervision, Writing—review & editing

Abou el kacem Qaiss: Supervision, Writing—review & editing.

Corresponding author

Correspondence to Nadia Zari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial, or otherwise.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5548 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allaoui, B.E., Chakhtouna, H., Zari, N. et al. Recent developments in functionalized polymer NF membranes for biofouling control. emergent mater. 5, 1345–1371 (2022). https://doi.org/10.1007/s42247-022-00367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00367-x

Keywords

Navigation