Skip to main content

Advertisement

Log in

The effect of Cu/In molar ratio on the analysis and characterization of CuInS2 nanostructures

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Copper indium sulfide (CuInS2) nanostructures have been successfully deposited on silicon substrates using the electrospinning method. As a result, different copper to indium (Cu/In) molar ratios have been used: 0.1, 0.5, 0.8, 1.2, and 1.4 at annealing temperature 300 °C. The optical properties have been measured using photoluminescence spectroscopy (PL), which indicated a decrease in the optical band gap from 1.6 to 1.53 eV with increasing Cu/In molar ratio. The structural properties have been deduced using X-ray diffraction (XRD), which improved the crystallinity size and quality by increasing the Cu/In molar ratio. The c/a ratio at different Cu/In molar ratios ranges from 2.004 to 2.037 due to the zinc blende structure, and the crystallite size was varied from 22.53 to 56.33 nm. The average grain size was approximately 39 nm, and the lattice parameters vary from 5.53 to 5.5 Å and from 11.09 to 11.2 Å for a and c, respectively. The compositional properties are studied using energy-dispersive X-ray spectroscopy (EDX), which showed that the samples are almost stoichiometric with S-deficient and Cu-rich composition. The best-formed structure’s value was at molar ratio 1.4, where the real phase is 60.5%, and the secondary phase is 39.5% due to the increase in grain size, and that in turn occurred due to the decrease in the energy band gap. The morphological properties have been depicted using field emission scanning electron microscopy (FESEM). FESEM images indicated a change in the grain particles’ homogeneity and agglomeration due to changing the Cu/In molar ratio. According to the available literature, the obtained results promise to use CuInS2 as absorber material in photovoltaic devices’ nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Masjedi-arani, M. Salavati-niasari, A simple sonochemical approach for synthesis and characterization of Zn2SiO4 nanostructures. Ultrason. Sonochem. 29, 226–235 (2016)

    Article  CAS  Google Scholar 

  2. X.B. Lu, R. He, C.X. Bai, Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. J. Mol. Catal. A Chem. 186(1–2), 1–11 (2002)

    Article  CAS  Google Scholar 

  3. S. Mortazavi-derazkola, M. Salavati-niasari, O. Amiri, A. Abbasi, Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 26, 4956 (2017)

    Article  Google Scholar 

  4. M. Salavati-niasari, Z. Fereshteh, F. Davar, Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28(1), 126–130 (2009)

    Article  CAS  Google Scholar 

  5. L. H. Madkour, Nanoelectronic Materials, Fundamentals and Applications, no. September. 2019.

  6. M. Ťapajna, Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. Polyhedron 30(6), 1055–1060 (2011)

    Google Scholar 

  7. M. Amiri, M. Salavati-niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interf. Sci. 265, 29–44 (2019)

    Article  CAS  Google Scholar 

  8. A. Abbasi, D. Ghanbari, M.S. Masood, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J Mater Sci: Mater Electron 27, 4800–4809 (2016)

    CAS  Google Scholar 

  9. D. Ghanbari, M. Salavati-Niasari, Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J Ind Eng Chem. 24, 284–292 (2015)

  10. P. Arnou, C.S. Cooper, S. Uličná, A. Abbas, A. Eeles, L.D. Wright, A.V. Malkov, J.M. Walls, J.W. Bowers, Solution processing of CuIn(S,Se)2 and Cu(In,Ga)(S,Se)2 thin film solar cells using metal chalcogenide precursors. Thin Solid Films 633, 76–80 (2017)

    Article  CAS  Google Scholar 

  11. S. Lin, J. Sung, C. Lu, Effects of the surface sulfurization reactions on the structural and photovoltaic properties of Cu(In,Ga )( Se,S )2 solar cells. Thin Solid Films 616, 746–753 (2016)

    Article  CAS  Google Scholar 

  12. Y. Lin, S. Wei, Y. Liang, W. Syus, A simple non-toxic simultaneous selenization / sulfurization process for Cu (In,Ga)(S,Se)2 solar cells. Mater. Chem. Phys. 219(May), 283–291 (2018)

    Article  CAS  Google Scholar 

  13. X. Lyu, D. Zhuang, M. Zhao, N. Zhang, Y. Wei, Influences of sulfurization on performances of Cu(In,Ga)(Se,S)2 cells fabricated based on the method of sputtering CIGSe quaternary target. J. Alloys Compd. 791, 1193–1199 (2019)

    Article  CAS  Google Scholar 

  14. A. Kotbi, B. Hartiti, S. Fadili, H. Labrim, A. Ridah, P. Thevenin, Synthesis and characterization of sprayed CIGS thin films for photovoltaic application. Mater Today Proc. 24, 66–70 (2020)

    Article  CAS  Google Scholar 

  15. T. Hurma, S. Kose, Effect of Cu and In content in precursor solution on the structural and optical properties of CuInS2 in CH ordered nanostructured films. Optik (Stuttg). 127(8), 3779–3782 (2016)

    Article  CAS  Google Scholar 

  16. T.I. Jayaraj, U.R. Parthasarathy, R. Oommen, Enhanced optoelectronic and photoelectrochemical characteristics of nebulised spray pyrolysed ‘Cu’ rich CuInS2 thin film. Mater. Sci. Semicond. Process. 49, 84–91 (2016)

    Article  Google Scholar 

  17. C. Buchmaier et al., Room temperature synthesis of CuInS2 nanocrystals. R. Soc. Chem. 6, 106120–106129 (2016)

    CAS  Google Scholar 

  18. F. Aslan, M.Z. Zarbali, B. Yesilata, I.H. Mutlu, Effects of Cu/In ratio and annealing temperature on physical properties of dip-coated CuInS2 thin films. Mater. Sci. Semicond. Process. 16(1), 138–142 (2013)

    Article  CAS  Google Scholar 

  19. Y. Liu, Z. Zhang, H. Gao, H. Zhang, Y. Mao, A novel inorganic hole-transporting material of CuInS2 for perovskite solar cells with high efficiency and improved stability. Org. Electron. 75(July), 105430 (2019)

    Article  CAS  Google Scholar 

  20. A. Rayar, S. Chapi, The vision for polymer solar cells is power production at low cost. J. Nano- Electron. Phys. 12(5), 05008-1-05008–5 (2020)

    Article  Google Scholar 

  21. X. Huang, R. Yu, X. Yang, X. Xu, H. Zhang, D. Zhang, Efficient CuInS2/ZnS based quantum dot light emitting diodes by engineering the exciton formation interface. J Lumin. 202, 339–344 (2018)

  22. Ö. Yağci, R. Arat, N. Sarıer, B.C. Ömür, A. Altındal, Ethanol sensing with pure and boric acid doped eectrospun CuInS2 nanofibers in the presence of relative humidity. Mater Sci Semicond Process 104, 104651 (2019)

  23. K. Zhang, S. Lv, Q. Zhou, D. Tang, CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sensors Actuators B Chem. 307, 127631 (2020)

    Article  CAS  Google Scholar 

  24. Z. Hao, Y. Cui, G. Wang, Colloidal synthesis of wurtzite CuInS2 nanocrystals and their photovoltaic application. Mater. Lett. 146, 77–80 (2015)

    Article  CAS  Google Scholar 

  25. W. Yue et al., Hierarchical CuInS2 synthesized with the induction of histidine for polymer/CuInS2 solar cells. Mater Sci Semicond Process. 76, 14–24 (2018)

  26. S. Lugo, I. López, Y. Peña, M. Calixto, T. Hernández, S. Messina, D. Avellaneda, Characterization of CuInS2 thin films prepared by chemical bath deposition and their implementation in a solar cell. Thin Solid Films 569, 76–80 (2014)

    Article  CAS  Google Scholar 

  27. T. Logu, K. Sankarasubramanian, P. Soundarrajan, J. Archana, Y. Hayakawa, K. Sethuraman, Vanadium doping induces surface morphological changes of CuInS2 thin films deposited by chemical spray pyrolysis. J. Anal. Appl. Pyrolysis 122, 230–240 (2016)

    Article  CAS  Google Scholar 

  28. T. Chtouki, L. Soumahoro, B. Kulyk, H. Bougharraf, H. Erguig, K. Ammous, B. Sahraoui, Comparative study on the structural, morphological, linear and nonlinear optical properties of CZTS thin films prepared by spin-coating and spray pyrolysis. Mater. Today Proc. 4, 5146–5153 (2017)

    Article  Google Scholar 

  29. Y. Al-Douri, Synthesis and characterization of Cu2CdSnS4 quaternary alloy nanostructures. Int. J. Electrochem. Sci. 13, 6693–6707 (2018)

    Article  CAS  Google Scholar 

  30. S. Chapi, Optical, electrical and electrochemical properties of PCL5/ITO transparent conductive films deposited by spin-coating – materials for single-layer devices. J. Sci. Adv. Mater. Devices 5(3), 322–329 (2020)

    Article  Google Scholar 

  31. S. Chapi, Structural and electrochemical properties of polymer blend based ZnO nanocomposite solid polymer electrolytes by spin-coating method. J. Nano- Electron. Phys. 12(2), 1–5 (2020)

    Article  Google Scholar 

  32. S. Chapi, H. Devendrappa, Optical, electrical, thermal and electrochemical studies of spin-coated polyblend-ZnO nanocomposites. J. Mater. Sci. Mater. Electron. 27(11), 11974–11985 (2016)

    Article  CAS  Google Scholar 

  33. J. Yuan, C. Shao, L. Zheng, M. Fan, H. Lu, C. Hao, D. Tao, Fabrication of CuInS2 thin film by electrodeposition of Cu-In alloy. Vacuum 99, 196–203 (2014)

    Article  CAS  Google Scholar 

  34. V. Renuga, C.N. Mohan, A. Manikandan, Influence of Mn2 + ions on both core/shell of CuInS2/ZnS nanocrystals. Mater. Res. Bull. 98, 265–274 (2018)

    Article  CAS  Google Scholar 

  35. N. Chumha, T. Thongtem, S. Thongtem, S. Kittiwachana, Cyclic microwave radiation synthesis, photoconductivity, and optical properties of CuInS2 hollow sub-microspheres. Appl. Surf. Sci. 447, 292–299 (2018)

    Article  CAS  Google Scholar 

  36. L. Thirumalaisamy, S. Palanivel, R. Raliya, S. Kavadiya, Single-step growth of CuInS2 nanospheres morphology thin films by electrospray chemical aerosol deposition technique. Mater. Lett. 238, 206–209 (2019)

    Article  CAS  Google Scholar 

  37. R. Garza-Hernández, S. Lugo-Loredo, F.S. Aguirre-Tostado, The role of copper during the growth of stoichiometric Cu2ZnSnS4 by successive ionic layer adsorption and reaction method. Ceram. Int. 46(4), 5185–5192 (2020)

    Article  Google Scholar 

  38. W.-G. Chang, L.-L. Tao, Hydrothermal synthesis and optical properties of CuInS2 micro-/nanomaterials by using gemini surfactant as soft template. J. Appl. Spectrosc. 86(3), 549–553 (2019)

    Article  CAS  Google Scholar 

  39. J. Lontchi, M. Abaab, Study of structural, optical and electrical properties of thermal evaporated undoped and Na doped CuInS2 thin films. Thin Solid Films 633, 81–86 (2017)

    Article  CAS  Google Scholar 

  40. W. Ligang, W. Yanlai, Y. Wei, Z. Jun, X. Jingang, Effect of sulfurization time on the formation of CuInS2 thin films. Rare Metal Mater. Eng. 44(4), 805–807 (2015)

    Article  Google Scholar 

  41. X. Lu, F. Deng, M. Liu, X. Luo, A. Wang, The regulation on visible-light photocatalytic activity of CuInS2 by different Cu/In molar ratio. Mater. Chem. Phys. 212, 372–377 (2018)

    Article  CAS  Google Scholar 

  42. T. Logu, K. Sankarasubramanian, P. Soundarrajan, M. Sampath, K. Sethuraman, Growth of N type CuInS2 microspheres on P type CuInS2 seed layer prepared using facile low cost chemical methods. Superlattice. Microst. 83, 690–698 (2015)

    Article  CAS  Google Scholar 

  43. S. Ananthakumar, J. Ram Kumar, S. Moorthy Babu, Evolution of non-phosphine solvents in colloidal synthesis of I-III-VI2 and I2-II-IV-VI4 group semiconductor nanomaterials – Current status. Mater. Sci. Semicond. Process. 67, 152–174 (2017)

    Article  CAS  Google Scholar 

  44. A.D.P. Leach, J.E. Macdonald, Optoelectronic properties of CuInS2 nanocrystals and their origin. J. Phys. Chem. Lett. 7(3), 572–583 (2016)

    Article  CAS  Google Scholar 

  45. A. Antony, A.S. Asha, R. Yoosuf, R. Manoj, M.K. Jayaraj, Growth of CuInS2 thin films by sulphurisation of Cu-In alloys. Sol. Energy Mater. Sol. Cells 81(4), 407–417 (2004)

    Article  CAS  Google Scholar 

  46. A. Frank, R. Changizi, C. Scheu, Challenges in TEM sample preparation of solvothermally grown CuInS2 films. Micron 109(December 2017), 1–10 (2018)

    Article  CAS  Google Scholar 

  47. Y. Al-Douri, A.A. Odeh, Y.A. Wahab, C.H. Voon, Correlation between magnetization and particle size of CdS nanostructures by solvothermal method. J. Supercond. Nov. Magn. 32(2), 283–289 (2019)

    Article  CAS  Google Scholar 

  48. J. Ben Belgacem, M. Nouiri, K. Medjnoun, K. Djessas, Z. Ben Ayadi, CuInS2 thin films obtained through an innovative CSVT deposition method from solvothermal-generated precursors. Mater. Sci. Semicond. Process. 83(August 2017), 224–230 (2018)

    Article  CAS  Google Scholar 

  49. C. Sun et al., A High-Yield Synthesis of Chalcopyrite CuInS2 Nanoparticles with Exceptional Size Control. J Nanomater. 2009, 1–7 (2009)

    Article  Google Scholar 

  50. B. Gao, H. Xue, F. Tang, Y. Cheng, Effect of structural phase transformations under pressure on electronic and optical properties of CuInS2. Curr. Appl. Phys. 17(11), 1564–1569 (2017)

    Article  Google Scholar 

  51. Structural and optical features, Y. Al-Douri, A. Abu Odeh, and A. S. Ibraheam, Transition metals doped In2S3 nanostructure. Mater. Res. Express 6, 4–13 (2019)

    Google Scholar 

  52. A.S. Ibraheam, Y. Al-Douri, U. Hashim, M.R. Ghezzar, A. Addou, W.K. Ahmed, Cadmium effect on optical properties of Cu2Zn1-xCdxSnS4 quinternary alloys nanostructures. Sol. Energy 114, 39–50 (2015)

    Article  CAS  Google Scholar 

  53. S. Fiechter, Y. Tomm, M. Kanis, R. Scheer, W. Kautek, On the homogeneity region, growth modes and optoelectronic properties of chalcopyrite type CuInS2. Phys. Status Solidi 245(9), 1761–1771 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abu Odeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alalousi, M.A., Abu Odeh, A., Ibraheam, A.S. et al. The effect of Cu/In molar ratio on the analysis and characterization of CuInS2 nanostructures. emergent mater. 4, 413–422 (2021). https://doi.org/10.1007/s42247-021-00176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00176-8

Keywords

Navigation