Skip to main content
Log in

Effects of Cu doping on the structural, photoluminescence and impedance spectroscopy of CoS2 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper-doped cobalt sulfide (CuxCo1−xS2: x = 0–0.1) nanocrystalline thin films were deposited on glass substrates using successive ionic layer adsorption and reaction (SILAR) technique. The influence Cu element concentration on nanostructural, morphological, photoluminescence and impedance properties of CuxCo1−xS2 thin films were examined by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), electron dispersive X-ray (EDX) photoluminescence (PL) and impedance spectroscopy. XRD results revealed that all prepared films consist of pure cubic phase of CoS2 pyrites structure and were well crystallized with the preferentially oriented along (200) plane. Cu doping resulted in a significant increase in the crystallinity of the films and a noticeably alteration in crystallite size. FESEM images revealed that the deposited thin film having spherical grain distribution and the grain sizes decreased from 56 to 34 nm with increasing Cu doping level. The EDX analysis confirmed the stoichiometry of prepared thin films. Photoluminescence (PL) spectra display the broad emission bands centered at 411 with a hump at 417 nm, due to the intrinsic defects. From the impedance spectroscopy analysis, we examined the equivalent circuit and frequency-dependent relaxation phenomenon in dielectric dipoles, loss of electrical energy and AC conductivity of the pure and Cu-doped thin films. Finally, all properties have been discussed, as an impartial of the research work, in terms of the Cu doping content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, Energy Environ. Sci. 6, 3553 (2013)

    Article  CAS  Google Scholar 

  2. D.S. Kong, H.T. Wang, Z.Y. Lu, Y. Cui, J. Am. Chem. Soc. 136, 4897 (2014)

    Article  CAS  Google Scholar 

  3. M.S. Faber, K. Park, M. Cabán-Acevedo, P.K. Santra, S. Jin, J. Phys. Chem. Lett. 4, 1843 (2013)

    Article  CAS  Google Scholar 

  4. A. Ivanovskaya, N. Singh, R.F. Liu, H. Kreutzer, J. Baltrusaitis, T.V. Nguyen, H. Metiu, E. McFarland, Langmuir 29, 480 (2013)

    Article  CAS  Google Scholar 

  5. T. Thio, J.W. Bennett, Phys. Rev. B 50, 10574 (1994)

    Article  CAS  Google Scholar 

  6. M. Cabán-Acevedo, D. Liang, K.S. Chew, J.P. DeGrave, N.S. Kaiser, S. Jin, ACS Nano 9(7), 1731 (2013)

    Article  Google Scholar 

  7. R. Yamamoto, A. Machida, Y. Moritom, A. Nakamura, Phys. B 281, 705 (2000)

    Article  Google Scholar 

  8. H. Yamada, K. Terao, M. Aoki, J. Magn. Magn. Mater. 177, 607 (1998)

    Article  Google Scholar 

  9. T. Shishidou, A.J.R. Freeman Asahi, Phys. Rev. B. 64, 180401 (2001)

    Article  Google Scholar 

  10. P.J. Masset, R.A. Guidotti, J. Power Sources 178, 456 (2008)

    Article  CAS  Google Scholar 

  11. J.M. Yan, H.Z. Huang, J. Zhang, Z.J. Liu, Y. Yang, J. Power Sources 145, 264 (2005)

    Article  Google Scholar 

  12. P.V. Kamat, J. Phys. Chem. Lett. 4, 908 (2013)

    Article  CAS  Google Scholar 

  13. L. Guo, J. Deng, G. Wang, Y.H. Ke, X. Wang, Y. Yang, Adv. Funct. Mater. 28, 1804540 (2018)

    Article  Google Scholar 

  14. J. Hao, W. Yang, Z. Peng, C. Zhang, Z. Huang, W. Shi, ACS Catal. 7, 4214–4220 (2017)

    Article  CAS  Google Scholar 

  15. H.J. Kim, C.W. Kim, D. Punnoose, C.V.V.M. Gopi, S.K. Kim, K. Prabakar, S.S. Rao, Appl. Surf. Sci. 328, 78–85 (2015)

    Article  CAS  Google Scholar 

  16. S.K. Shinde, M.B. Jalak, S.Y. Kim, H.M. Yadav, G.S. Ghodake, A.A. Kadam, D.Y. Kim, Ceram. Int. 44, 23102–23108 (2018)

    Article  CAS  Google Scholar 

  17. V.P. Deshpande, A.U. Ubale, J. Mater. Sci. 27, 12826–12833 (2016)

    CAS  Google Scholar 

  18. X.H. Chen, R. Fan, Chem. Mater. 13, 802 (2001)

    Article  CAS  Google Scholar 

  19. X.F. Qian, X.M. Zhang, C. Wang, K.B. Tang, Y. Xie, Y.T. Qian, J. Alloys Compd. 278, 110 (1998)

    Article  CAS  Google Scholar 

  20. C.J. Chen, P.T. Chen, M. Basu, K.C. Yang, Y.R. Lu, C.L. Dong, C.G. Ma, C.C. Shen, S.F. Hu, R.S. Liu, J. Mater. Chem. A 3, 23466 (2015)

    Article  CAS  Google Scholar 

  21. L. Zhu, D. Susac, M. Teo, K.C. Wong, P.C. Wong, R.R. Parsons, D. Bizzotto, K.A.R. Mitchell, S.A. Campbell, J. Catal. 258, 235–242 (2008)

    Article  CAS  Google Scholar 

  22. S. Bausch, B. Sailer, H. Keppner, G. Willeke, E. Bucher, G. Frommeyer, Appl. Phys. Lett. 57, 25 (1990)

    Article  CAS  Google Scholar 

  23. J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, J. Am. Chem. Soc. 125, 12567 (2003)

    Article  CAS  Google Scholar 

  24. J. Yang, Z. Jin, T. Liu, C. Li, Y. Shi, Sol. Energy Mater. Sol. Cells 92, 621 (2008)

    Article  CAS  Google Scholar 

  25. X. Hong, S. Li, X. Tang, Z. Sun, F. Li, J. Alloy. Compd. 749, 586–593 (2018)

    Article  CAS  Google Scholar 

  26. M.T.S. Nair, P.K. Nair, R.A. Zingaro, E.A. Meyers, J. Appl. Phys. 74(3), 1879 (1993)

    Article  CAS  Google Scholar 

  27. K.C. Preetha, K.V. Murali, A.J. Ragina, K. Deepa, T.L. Remadevi, Curr. Appl. Phys. 12, 5359 (2012)

    Article  Google Scholar 

  28. C.S. Barett, T.B. Massalski, Crystallographic Methods Principles and Data, 3rd edn. (McGraw Hill, New York, 1996).

    Google Scholar 

  29. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, S. AlFaify, J. Phys. Chem. Solids 130, 189–196 (2019)

    Article  CAS  Google Scholar 

  30. A. Arulanantham, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, J. Mater. Sci. 29, 11358–11366 (2018)

    CAS  Google Scholar 

  31. M. Lei, R. Zhang, H.J. Yang, Y.G. Wang, Mater. Lett. 76, 87–89 (2012)

    Article  CAS  Google Scholar 

  32. L. Xue, L. Xaing, L.P. Ting, C.X. Wang, L. Ying, C.C. Bao, Chin. Phys. B 19, 027202 (2010)

    Article  Google Scholar 

  33. H.J. Egelhaaf, D. Oelkrug, J. Cryst. Growth 161, 190–194 (1996)

    Article  CAS  Google Scholar 

  34. S. Taibl, G. Fafilek, J. Fleig, Nanoscale 8, 13954–13966 (2016)

    Article  CAS  Google Scholar 

  35. C.B. Mohmed, K. Karoui, S. Saidi, K. Guidara, A.B. Rhaiem, Phys. B 451, 87–95 (2014)

    Article  Google Scholar 

  36. K.S. Udapa, P.M. Rao, S. Aithal, A.P. Bhat, D.K. Avasthi, Bull. Mater. Sci. 20, 1069 (1997)

    Article  Google Scholar 

  37. M. Shakir, B.K. Singh, R.K. Gaur, B. Kumar, G. Bhagavannarayana, M.A. Wahab, Chalcogenide Lett. 6, 655 (2009)

    CAS  Google Scholar 

  38. D. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Mat. Res. 19(2), 478–482 (2016)

    Article  Google Scholar 

  39. S. Suresh, Syth. Int. J. Phys. Sci. 8(21), 1121–1127 (2013)

    Google Scholar 

  40. A.K. Jonscher, Nature 267, 673 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to researchers supporting project number (RSP-2020/130), King Saud University, Riyadh, Saudi Arabia for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SMA and SSA; methodology, MSA and SMA; analysis, KS and TU; investigation, SMA and TU; writing-original draft preparation, SMA and MAMK; revision and editing, SMA and JA.

Corresponding author

Correspondence to Syed Mansoor Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.M., AlGarawi, M.S., AlGamdi, S.S. et al. Effects of Cu doping on the structural, photoluminescence and impedance spectroscopy of CoS2 thin films. J Mater Sci: Mater Electron 32, 3948–3957 (2021). https://doi.org/10.1007/s10854-020-05136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05136-2

Navigation