Skip to main content

Advertisement

Log in

Texture, Mechanical Properties, and Formability of a Lightweight Steel during Cold Rolling and Annealing

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the texture evolution, mechanical properties, and formability of cold-rolled lightweight steel annealed at 500, 600, 700, and 800 °C for 30 min were investigated. The phases in the annealed specimens mainly included ferrite, austenite, and martensite. The retained austenite showed a trend of increasing and then decreasing with the increase in annealing temperature. At the annealing temperature of 700 °C, the retained austenite content reached the maximum value of 53.0%, resulting in a large amount of martensitic TRIP effect during the subsequent deformation. So the steel obtained the optimal mechanical properties with the ultimate tensile strength of 1613 MPa, ultimate elongation of 30.2%, and largest product of strength and ductility of 48.7GPa%. In addition, the annealing temperature of 700 °C was conducive to the stamping texture of {111} < 110> orientation, as well as higher strength, and the plastic strain ratio (r), the strain hardening index (n), and the flexural strength ratio (ReL/Rm) were 1.25, 0.55, and 0.41, respectively, the material obtained excellent formability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Rana, Low-Density Steels, JOM., 2014, 66(9), p 1–4.

    Article  Google Scholar 

  2. G. Park, C.H. Nam, A. Zargaran, and N.J. Kim, Effect of B2 Morphology on the Mechanical Properties of B2-Strengthened Lightweight Steels, Scripta Mater., 2019, 165, p 68–72.

    Article  CAS  Google Scholar 

  3. I. Gutierrez-Urrutia, Low Density Fe-Mn-Al-C Steels: Phase Structures, Mechanisms and Properties: Mechanical Properties, ISIJ Int., 2021, 61(1), p 16–25.

    Article  CAS  Google Scholar 

  4. W. Ding, J. Du, and Y. Li, Transformations during Intercritical Annealing and their Implications for Microstructure and Mechanical Properties of Medium Mn Transformation-Induced Plasticity Steel in Continuous Annealing Line, J. Mater. Eng. Perform., 2020, 29, p 23–31.

    Article  CAS  Google Scholar 

  5. F. Yang, H. Luo, B. Hu et al., Effects of Intercritical Annealing Process on Microstructures and Tensile Properties of Cold-Rolled 7Mn Steel, Mater. Sci. Eng. A., 2017, 685, p 115–122.

    Article  CAS  Google Scholar 

  6. B. Hu and H. Luo, A Strong and Ductile 7Mn Steel Manufactured by Warm Rolling and Exhibiting both Transformation and Twinning Induced Plasticity, J. Alloys Compd., 2017, 725, p 684–693.

    Article  CAS  Google Scholar 

  7. Q. Tonizzo, A.F. Gourgues-Lorenzon, M. Maziere et al., Microstructure, Plastic Flow and Fracture Behavior of Ferrite-Austenite Duplex Low Density Medium Mn Steel, Mater. Sci. Eng. A., 2017, 706, p 217–226.

    Article  CAS  Google Scholar 

  8. C. Sun, Y.F. Shen, and W.Y. Xue, Ultrahigh Strength Induced by Superstorage Capacity of Dislocations in an Ultrafine-Grained Fe-9Mn-0.15Si-0.26C Steel, J. Mater. Eng. Perform., 2022, 31, p 6773–6783.

    Article  CAS  Google Scholar 

  9. Q.W. Zhi, D. Hua, Y.L. Hua et al., Microstructural Evolution and Strain Hardening Behavior during Plastic Deformation of Fe-12M-8Al-0.8C Steel, Mater. Sci. Eng. A., 2013, 584, p 150–155.

    Article  Google Scholar 

  10. B. Hu, H. Luo, F. Yang et al., Recent Progress in Medium-Mn Steels Made with New Designing Strategies, A Review, J. Mater. Sci. Technol., 2017, 33(12), p 1457–1464.

    Article  CAS  Google Scholar 

  11. A. Ss, B. Zh, C. Hra et al., Interplay of Austenite and Ferrite Deformation Mechanisms to Enhance the Strength and Ductility of a Duplex Low-Density Steel, J. Mater. Res. Technol., 2022, 18, p 755–768.

    Article  Google Scholar 

  12. S. Lee, W. Woo, and C.B.C. De, Analysis of the Tensile Behavior of 12 pct Mn Multi-phase (a+γ) TWIP+TRIP Steel by Neutron Diffraction, Mater. Trans. A, 2016, 47, p 2125–2140.

    Article  CAS  Google Scholar 

  13. Z.H. Cai, H. Ding, R.D.K. Misra et al., Austenite Stability and Deformation Behavior in a Cold-Rolled Transformation-Induced Plasticity Steel with Medium Manganese Content, Acta Mater., 2015, 84, p 229–236.

    Article  CAS  Google Scholar 

  14. S.J. Park, B. Hwang, K.H. Lee et al., Microstructure and Tensile Behavior of Duplex Low-Density Steel Containing 5 Mass% Aluminum, Scripta Mater., 2013, 68(6), p 365–369.

    Article  CAS  Google Scholar 

  15. P. Chen, R. Chen, and X.-W. Li, Tensile Deformation Behavior Related with Strain-Induced Martensitic Transformation in a Duplex Fe-Mn-Al-C Low-Density Steel, Mater. Char., 2022, 189, 111954.

    Article  CAS  Google Scholar 

  16. C.H. Seo, K.H. Kwon, K. Choi et al., Deformation Behavior of Ferrite-Austenite Duplex Lightweight Fe-Mn-Al-C Steel, Scripta Mater., 2012, 66(8), p 519–522.

    Article  CAS  Google Scholar 

  17. D. Han, X. Yunbo, J. Zhang, F. Peng, and W. Sun, Relationship Between Crystallographic Orientation, Microstructure Characteristic and Mechanical Properties in Cold-Rolled 3.5Mn TRIP Steel, Mater. Sci. Eng. A, 2021, 821, p 141625.

    Article  CAS  Google Scholar 

  18. Y.F. Shen, C.H. Qiu, L. Wang, X. Sun, X.M. Zhao, and L. Zuo, Effects of Cold Rolling on Microstructure and Mechanical Properties of Fe-30Mn-3Si-4Al-0.093C TWIP Steel, Mater. Sci. Eng. A, 2013, 561, p 329–337.

    Article  CAS  Google Scholar 

  19. G.Q. Li, Y.F. Shen, N. Jia, X.W. Feng, and W.Y. Xue, Microstructural Evolution and Mechanical Properties of a Micro-Alloyed Low-Density δ-TRIP Steel, Mater. Sci. Eng. A, 2022, 848, 143430.

    Article  CAS  Google Scholar 

  20. G. Frommeyer and U. Brüx, Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels, Steel Res. Int., 2006, 77, p 627–633.

    Article  CAS  Google Scholar 

  21. D.I. Hyun, S.M. Oak, S.S. Kang et al., Estimation of Hole Flangeability for High Strength Steel Plates, J. Mater. Process. Technol., 2002, 130–131, p 9–13.

    Article  Google Scholar 

  22. K.G. Chin, C.Y. Kang, S.Y. Shin et al., Effects of Al Addition on Deformation and Fracture Mechanisms in Two High Manganese TWIP Steels, Mater. Sci. Eng. A., 2011, 528(6), p 2922–2928.

    Article  Google Scholar 

  23. M. Koyama, H. Springer, S.V. Merzlikin et al., Hydrogen Embrittlement Associated with Strain Localization in a Precipitation-Hardened Fe-Mn-Al-C Light Weight Austenitic Steel, Int. J. Hydrog Energy., 2014, 39, p 4634–4646.

    Article  CAS  Google Scholar 

  24. J.H. Ryu, S.K. Kim, C.S. Lee et al., Effect of Aluminium on Hydrogen-Induced Fracture Behavior in Austenitic Fe-Mn-C Steel, Proc. R. Soc. A., 2013, 469, p 1–14.

    Article  Google Scholar 

  25. R. Rana, J. Loiseaux, and C. Lahaye, Microstructure, Mechanical Properties and Formability of a Duplex Steel, Mater. Sci. Forum., 2012, 706–709, p 2271–2717.

    Article  Google Scholar 

  26. S.S. Sohn, H. Song, B.C. Suh et al., Novel Ultra-High-Strength (Ferrite + Austenite) Duplex Lightweight Steels Achieved by Fine Dislocation Substructures (Taylor lattices), Grain Refinement, and Partial Recrystallization, Acta Mater., 2015, 96, p 301–310.

    Article  CAS  Google Scholar 

  27. B.K. Jha, R. Avtar, and V.S. Dwivedi, Structure-Property Correlation in Carbon Low Alloy High Strength Wire Rod/Wires Containing Retained Austenite, Trans. Indian Inst. Met., 1996, 49, p 133–142.

    CAS  Google Scholar 

  28. K.R. Gilmour, A.G. Leacock, and M.T.J. Ashbridge, The Influence of Plastic Strain Ratios on the Numerical Modelling of Stretch Forming, J. Mater. Process. Technol., 2004, 152(1), p 116–125.

    Article  CAS  Google Scholar 

  29. W.M. Guo, Z.C. Wang, S. Liu et al., Effects of Finish Rolling Temperature on Microstructure and Mechanical Properties of Ferritic-Rolled P-Added High Strength Interstitial-Free Steel Sheets, J. Iron Steel Res. Int., 2011, 18(5), p 5.

    Article  Google Scholar 

  30. J. Chiang, B. Lawrence, J.D. Boyd et al., Effect of Microstructure on Retained Austenite Stability and Work Hardening of TRIP Steels, Mater. Sci. Eng. A., 2011, 528(13), p 4516–4521.

    Article  Google Scholar 

  31. H.S. Park, J.C. Han, N.S. Lim et al., Nano-scale Observation on the Transformation Behavior and Mechanical Stability of Individual Retained Austenite in CMnSiAl TRIP Steels, Mater. Sci. Eng. A., 2015, 627, p 262–269.

    Article  CAS  Google Scholar 

  32. P. Wan, T. Kang, F. Li et al., Dynamic Recrystallization Behavior and Microstructure Evolution of Low-Density High-Strength Fe-Mn-Al-C Steel, J. Mater. Res. Technol., 2021, 15, p 1059–1068.

    Article  CAS  Google Scholar 

  33. C. Zhao, R. Song, L.F. Zhang et al., Effect of Annealing Temperature on the Microstructure and Tensile Properties of Fe-10Mn-10Al-0.7C Low-Density Steel, Mater. Des., 2019, 91, p 348–360.

    Article  Google Scholar 

  34. S.-J. Lee, S. Lee, and B.C. De Cooman, Martensite Transformation of Sub-micron Retained Austenite in Ultra-fine Grained Manganese Transformation-Induced Plasticity Steel, Int. J. Mater. Res., 2013, 104(5), p 423–429.

    Article  CAS  Google Scholar 

  35. Y. Li, D. San Martín, J. Wang, C. Wang and W. Xu, A Review of the Thermal Stability of Metastable Austenite in Steels: Martensite Formation, J. Mater. Sci. Technol., 2021, 91, p 200–214.

    Article  CAS  Google Scholar 

  36. D.P. Yang, T. Wang, Z.T. Miao, P.J. Du, G.D. Wang, and H.L. Yi, Effect of Grain Size on the Intrinsic Mechanical Stability of Austenite in Transformation-Induced Plasticity Steels: The Competition Between Martensite Transformation and Dislocation Slip, J. Mater. Sci. Technol., 2023, 162, p 38–43.

    Article  Google Scholar 

  37. M.C. Ha, J.M. Koo, J.K. Lee et al., Tensile Deformation of a Low Density Fe-27Mn-12Al-0.8C Duplex Steel in Association with Ordered Phases at Ambient Temperature, Mater. Sci. Eng. A., 2013, 586, p 276–283.

    Article  CAS  Google Scholar 

  38. G.K. Tirumalasetty, M.A. Van Huis, C. Kwakernaak et al., Deformation-Induced Austenite Grain Rotation and Transformation in TRIP-Assisted Steel, Acta Mater., 2012, 60(3), p 1311–1321.

    Article  CAS  Google Scholar 

  39. Z.C. Wang, S.J. Kim, C.G. Lee et al., Bake-Hardening Behavior of Cold-Rolled CMnSi and CMnSiCu TRIP-Aided Steel Sheets, J. Mater. Process. Technol., 2004, 151(1–3), p 141–145.

    Article  CAS  Google Scholar 

  40. R.K. Ray, J.J. Jonas, and R.E. Hook, Cold Rolling and Annealing Textures in Low Carbon and Extra Low Carbon Steels, Int. Mater. Rev., 1994, 39(4), p 129–172.

    Article  CAS  Google Scholar 

  41. Y. Nagataki and Y. Hosoya, Origin of the Recrystallization Texture Formation in an Interstitial Free Steel, ISIJ Int., 1996, 36(4), p 451–460.

    Article  CAS  Google Scholar 

  42. P. Ren, X.P. Chen, C.Y. Wang et al., Evolution of Microstructure, Texture and Mechanical Properties of Fe-30Mn-11Al-1.2C Low-Density Steel during Cold Rolling, Mater. Char., 2021, 174, p 111013.

    Article  CAS  Google Scholar 

  43. M.X. Liu, C.J. Song, and Z.S. Cui, Crystallographic Texture Evolution and Martensite Transformation in the Strain Hardening Process of a Ferrite-based Low Density Steel, J. Mater. Sci. Technol., 2021, 78(19), p 247–259.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Anhui Provincial Natural Science Foundation (No. 2108085ME143), and Anhui Provincial Universities Natural Science Research Project (No. KJ2021ZD0045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-feng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Fm., Wu, Xj., Zhang, Xf. et al. Texture, Mechanical Properties, and Formability of a Lightweight Steel during Cold Rolling and Annealing. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08665-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08665-z

Keywords

Navigation