Skip to main content
Log in

Effect of solidification mode on microstructure evolution and properties of magnesium alloy with long-period stacking ordered phase

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The solidification methods of electromagnetic stirring (EMS) and non-electromagnetic stirring were employed to prepare Mg–6Gd–3Y–xZn–0.6Zr (x = 1, 1.5, 2, 3) alloys. The evolution of alloy microstructures and the changes in properties were analyzed for different Zn contents. It has been observed that in alloys without electromagnetic stirring, as the Zn content increases, the alloy structure gradually refines. The primary second phase transitions from Mg5RE phase to long-period stacking ordered (LPSO) phase, resulting in improved hardness and elongation. In alloys subjected to electromagnetic stirring, there is a relatively higher content of the second phase, primarily consisting of LPSO phase. After applying electromagnetic stirring, the quantity and the type of LPSO phase in the alloy change. The alloy structure becomes more uniform with electromagnetic stirring, resulting in increased hardness and reduced hardness gradients within the grains. The mechanical properties of alloys with electromagnetic stirring are superior to those without electromagnetic stirring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Gao, Y.A. Chen, Y. Wang, Mater. Sci. Eng. A 711 (2018) 334–342.

    Article  Google Scholar 

  2. R. Lu, J. Wang, Y. Chen, D. Qin, W. Yang, Z. Wu, J. Alloy. Compd. 639 (2015) 541–546.

    Article  Google Scholar 

  3. S.S.A. Shah, D. Wu, W.H. Wang, R.S. Chen, Mater. Sci. Eng. A 702 (2017) 153–160.

    Article  Google Scholar 

  4. Z.J. Yu, Y. Huang, X. Qiu, Q. Yang, W. Sun, Z. Tian, D.P. Zhang, J. Meng, Mater. Sci. Eng. A 578 (2013) 346–353.

    Article  Google Scholar 

  5. H. Chen, X. Li, Int. J. Corros. 2019 (2019) 2618737.

    Article  Google Scholar 

  6. Q.H. Zang, H.M. Chen, F.Y. Lan, J. Zhang, Y.X. Jin, J. Cent. South Univ. 24 (2017) 1034–1039.

    Article  Google Scholar 

  7. D. Wan, J. Li, T. Yu, Rare Met. Mater. Eng. 44 (2015) 2651–2655.

    Article  Google Scholar 

  8. W.S. Chuang, J.C. Huang, P.H. Lin, C.H. Hsieh, Y.H. Lin, K. Takagi, Y. Mine, K. Takashima, J. Alloy. Compd. 772 (2019) 288–297.

    Article  Google Scholar 

  9. H. Liao, J. Kim, T. Lee, J. Song, J. Peng, B. Jiang, F. Pan, J. Magnes. Alloy. 8 (2020) 1120–1127.

    Article  Google Scholar 

  10. K. Wang, J. Wang, S. Huang, S. Gao, S. Guo, S. Liu, X. Chen, F. Pan, Mater. Sci. Eng. A 733 (2018) 267–275.

    Article  Google Scholar 

  11. M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater. 59 (2011) 3646–3658.

    Article  Google Scholar 

  12. J.Y. Yang, W.J. Kim, J. Mater. Res. Technol. 8 (2019) 2316–2325.

    Article  Google Scholar 

  13. S.Q. Luo, A.T. Tang, F.S. Pan, K. Song, W.Q. Wang, Trans. Nonferrous Met. Soc. China 21 (2011) 795–800.

    Article  Google Scholar 

  14. R. Cheng, J. Zhang, Q. Zang, D. Han, D. Feng, H. Cui, H. Chen, Mater. Sci. Technol. 38 (2022) 995–1010.

    Article  Google Scholar 

  15. K. Li, V.S.Y. Injeti, R.D.K. Misra, L.G. Meng, X.G. Zhang, Mater. Sci. Eng. A 713 (2018) 112–117.

    Article  Google Scholar 

  16. C. Liu, X. Yang, J. Peng, B. Liu, Q. Luo, Q. Li, K.C. Chou, Scripta Mater. 226 (2023) 115264.

    Article  Google Scholar 

  17. H. Chen, D. Han, H. Cui, L. Zhang, L. Wang, J. Zhang, Y. Jin, Mater. Res. Express 6 (2019) 0965a5.

    Article  Google Scholar 

  18. C. Zhao, Z. Li, J. Shi, X. Chen, T. Tu, Z. Luo, R. Cheng, A. Atrens, F. Pan, J. Magnes. Alloy. 7 (2019) 672–680.

    Article  Google Scholar 

  19. N. Balasubramani, J. Venezuela, D. StJohn, G. Wang, M. Dargusch, J. Mater. Sci. Technol. 144 (2023) 243–265.

    Article  Google Scholar 

  20. Y. Qiu, K. Zheng, X. Li, Y. Luo, P. Xia, M. Liu, N. Zhou, Y. Jia, J. Mater. Res. Technol. 18 (2022) 2885–2895.

    Article  Google Scholar 

  21. M. Meng, H.L. Zhang, Z. Gao, G.X. Lei, J.M. Yu, J. Magnes. Alloy. (2022) https://doi.org/10.1016/j.jma.2022.02.012.

    Article  Google Scholar 

  22. D. Han, H. Chen, Q. Zang, Y. Qian, H. Cui, L. Wang, J. Zhang, Y. Jin, Mater. Charact. 163 (2020) 110295.

    Article  Google Scholar 

  23. Z. Zhang, Q. Zhang, L. Jin, Y. Zhang, T. Cai, L. Zhao, J. Wang, Z. Jin, L. Sheng, J. Alloy. Compd. 818 (2020) 152865.

    Article  Google Scholar 

  24. Z.B. Ding, Y.H. Zhao, R.P. Lu, M.N. Yuan, Z.J. Wang, H.J. Li, H. Hou, Trans. Nonferrous Met. Soc. China 29 (2019) 722–734.

    Article  Google Scholar 

  25. L. Yao, H. Hao, S.W. Gu, H.W. Dong, X.G. Zhang, Trans. Nonferrous Met. Soc. China 20 (2010) s388–s392.

    Article  Google Scholar 

  26. Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 58 (2010) 2936–2947.

    Article  Google Scholar 

  27. P. Mao, Y. Xin, K. Han, Z. Liu, Z. Yang, Mater. Sci. Eng. A 777 (2020) 139019.

    Article  Google Scholar 

  28. B.Q. Shi, L.Y. Zhao, D.C. Chen, C.Q. Li, Y. Dong, D. Wu, R.S. Chen, W. Ke, Mater. Sci. Eng. A 772 (2020) 138786.

    Article  Google Scholar 

  29. D.H. Ping, K. Hono, J.F. Nie, Scripta Mater. 48 (2003) 1017–1022.

    Article  Google Scholar 

  30. N. Su, Q. Deng, Y. Wu, L. Peng, K. Yang, Q. Chen, Mater. Charact. 171 (2021) 110756.

    Article  Google Scholar 

  31. Y.J. Wu, X.Q. Zeng, D.L. Lin, L.M. Peng, W.J. Ding, J. Alloy. Compd. 477 (2009) 193–197.

    Article  Google Scholar 

  32. K. Li, Z. Chen, T. Chen, J. Shao, R. Wang, C. Liu, J. Alloy. Compd. 792 (2019) 894–906.

    Article  Google Scholar 

  33. Y. Chi, J. Liu, Z. Zhou, S. Wu, W. Liu, M. Zheng, J. Alloy. Compd. 943 (2023) 169061.

    Article  Google Scholar 

  34. A. Granato, K. Lücke, J. Appl. Phys. 27 (1956) 789–805.

    Article  Google Scholar 

  35. R. Lu, K. Jiao, N. Li, H. Hou, J. Wang, Y. Zhao, J. Magnes. Alloy. (2022) https://doi.org/10.1016/j.jma.2022.06.013.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (Project No. KYCX22_3792) and Basic Science (Natural Science) Research General Project of Jiangsu Province Universities, China (22KJB430003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-mei Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, Hm., Zhang, X. et al. Effect of solidification mode on microstructure evolution and properties of magnesium alloy with long-period stacking ordered phase. J. Iron Steel Res. Int. (2023). https://doi.org/10.1007/s42243-023-01071-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01071-8

Keywords

Navigation