Skip to main content
Log in

Temperature dependence in tensile properties and deformation behavior of GH4169 alloy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of temperature on the tensile properties and deformation mechanism of GH4169 alloy has been systematically studied over a wide range of room temperature (RT) to 1000 °C. The results indicate that the stress–strain curve of the alloy shows serrations at 200–600 °C, and the character of the serrations changes from type A to type B and then to type C at different temperatures. The ultimate tensile strength of the alloy decreases gradually from RT to 600 °C. The yield strength decreases slowly from RT to 700 °C but decreases rapidly above 800 °C. Transmission electron microscopy analysis relieves that the primary deformation mechanism of the alloy below 500 °C is Orowan bypass mechanism. At temperatures between 600 and 700 °C, the coordinated deformation of twins and cross-slip of dislocations are activated. The transformation of \(\upgamma^{\prime \prime }\) phase to δ phase above 650 °C will decrease the strength. The primary deformation mechanism above 800 °C transforms into the repeated shearing of \(\upgamma^{\prime \prime }\) by dislocations to form multiple stacking faults. Recrystallized grains were observed above 800 °C, and continuous dynamic recrystallization and discontinuous dynamic recrystallization were observed. The stress concentration caused by Nb-rich carbides is the cause of intracrystalline crack nucleation. At 700 °C, grain boundary crack sprouting is caused by the combined effect of slip band impact on grain boundaries and grain boundary dislocation plugging. The relationship between the serrated flow behavior and the deformation mechanism has been discussed based on the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G.Q. Wang, M.S. Chen, H.B. Li, Y.C. Lin, W.D. Zeng, Y.Y. Ma, J. Mater. Sci. Technol. 77 (2021) 47–57.

    Article  Google Scholar 

  2. J. Yang, D. Liu, X. Zhang, M. Liu, W. Zhao, C. Liu, Int. J. Fatigue 133 (2020) 105373.

    Article  Google Scholar 

  3. X. Yang, W. Li, J. Li, B. Xiao, T. Ma, Z. Huang, J. Guo, Mater. Des. 87 (2015) 215–230.

    Article  Google Scholar 

  4. C. Silva, M. Song, M. Wang, K. Holliday, K. Leonard, G. Was, J. Busby, J. Nucl. Mater. 551 (2021) 152954.

    Article  Google Scholar 

  5. J. Luo, W. Yu, C. Xi, C. Zhang, C. Ma, J. Alloy. Compd. 777 (2019) 157–164.

    Article  Google Scholar 

  6. R.B. Bhavsar, A. Collins, S. Silverman, in: Superalloys, Rosharon, USA, 2001, pp. 1–9.

    Google Scholar 

  7. Y. Zhang, N. Liu, Z. Li, G.Q. Zhang, H. Yuan, W.Y. Xu, Z.J. Gao, J.W. Mi, Rare Met. 30 (2011) 401–404.

    Google Scholar 

  8. H. Xue, J.Q. Zhao, Y.K. Liu, C.X. Zhang, J.T. Luo, Trans. Nonferrous Met. Soc. China 30 (2020) 3287–3295.

    Article  Google Scholar 

  9. N.Y. Ye, M. Cheng, S.H. Zhang, H.W. Song, H.W. Zhou, J. Iron Steel Res. Int. 26 (2019) 148–153.

    Article  Google Scholar 

  10. Y.T. Chen, A.C. Yeh, M.Y. Li, S. Kuo, Mater. Des. 119 (2017) 235–243.

    Article  Google Scholar 

  11. H. Lu, X. Jia, K. Zhang, C. Yao, Mater. Sci. Eng. A 326 (2002) 382–385.

    Article  Google Scholar 

  12. X.P. Wei, W.J. Zheng, Z.G. Song, T. Lei, Q.L. Yong, Q.C. Xie, J. Iron Steel Res. Int. 20 (2013) 88–94.

    Article  Google Scholar 

  13. S.H. Zhang, H.Y. Zhang, M. Cheng, Mater. Sci. Eng. A 528 (2011) 6253–6258.

    Article  Google Scholar 

  14. Z. Gao, W. Guo, C. Zhang, J. Tan, Mater. Sci. Eng. A 682 (2017) 156–163.

    Article  Google Scholar 

  15. L. Tan, Y. Li, W. Deng, Y. Liu, F. Liu, Y. Nie, L. Jiang, J. Alloy. Compd. 804 (2019) 322–330.

    Article  Google Scholar 

  16. B. Wilthan, R. Tanzer, W. Schutzenhofer, G. Pottlacher, Rare Met. 25 (2006) 529–531.

    Article  Google Scholar 

  17. Z.L. Tian, S.B. Jiang, Z.Z. Chen, H.S. Bao, Z.D. Liu, J. Iron Steel Res. Int. 24 (2017) 513–519.

    Article  Google Scholar 

  18. T. Peng, Y. Wang, B. Yang, G. Yang, Mater. Sci. Eng. A 828 (2021) 142028.

    Article  Google Scholar 

  19. P. Zhang, Y. Yuan, H. Yin, Y. Gu, J. Wang, M. Yang, G. Yang, X. Song, Metall. Mater. Trans. A 49 (2018) 1571–1578.

    Article  Google Scholar 

  20. X. Liu, J. Fan, P. Zhang, J. Xie, F. Chen, D. Liu, R. Yuan, B. Tang, H. Kou, J. Li, J. Alloy. Compd. 869 (2021) 159342.

    Article  Google Scholar 

  21. P. Maj, J. Zdunek, M. Gizynski, J. Mizera, K.J. Kurzydlowski, Mater. Sci. Eng. A 619 (2014) 158–164.

    Article  Google Scholar 

  22. C. Fressengeas, A.J. Beaudoin, M. Lebyodkin, L.P. Kubin, Y. Estrin, Mater. Sci. Eng. A 400–401 (2005) 226–230.

    Article  Google Scholar 

  23. H. Zhang, C. Li, Q. Guo, Z. Ma, Y. Huang, H. Li, Y. Liu, Mater. Sci. Eng. A 722 (2018) 136–146.

    Article  Google Scholar 

  24. Y. Wang, W.Z. Shao, L. Zhen, C. Yang, X.M. Zhang, J. Alloy. Compd. 471 (2009) 331–335.

    Article  Google Scholar 

  25. K. Kulawik, P.A. Buffat, A. Kruk, A.M. Wusatowska-Sarnek, A. Czyrska-Filemonowicz, Mater. Charact. 100 (2015) 74–80.

    Article  Google Scholar 

  26. E. Pink, A. Grinberg, Mater. Sci. Eng. 51 (1981) 1–8.

    Article  Google Scholar 

  27. T. Liu, X. Cheng, R. Luo, Y. Cao, H. Ding, L. Chen, Q. Wang, B. Zhang, J. Alloy. Compd. 891 (2022) 161992.

    Article  Google Scholar 

  28. B. Reppich, P. Schepp, G. Wehner, Acta Metall. 30 (1982) 95–104.

    Article  Google Scholar 

  29. R.C. Reed, Superalloys Fundam. Appl. (2006) No. 2, 33–120.

  30. Z. Zhong, Y. Gu, Y. Yuan, Z. Shi, Metall. Mater. Trans. A 45 (2014) 343–350.

    Article  Google Scholar 

  31. F. Pettinari, J. Douin, G. Saada, P. Caron, A. Coujou, N. Clément, Mater. Sci. Eng. A 325 (2002) 511–519.

    Article  Google Scholar 

  32. T.L. Achmad, W. Fu, H. Chen, C. Zhang, Z.G. Yang, J. Alloy. Compd. 694 (2017) 1265–1279.

    Article  Google Scholar 

  33. Y. Koizumi, T. Nukaya, S. Suzuki, S. Kurosu, Y. Li, H. Matsumoto, K. Sato, Y. Tanaka, A. Chiba, Acta Mater. 60 (2012) 2901–2915.

    Article  Google Scholar 

  34. Y.J. Xu, D.Q. Qi, K. Du, C.Y. Cui, H.Q. Ye, Scripta Mater. 87 (2014) 37–40.

    Article  Google Scholar 

  35. Y.F. Han, P. Deb, M.C. Chaturvedi, Met. Sci. 16 (1982) 555–562.

    Article  Google Scholar 

  36. J.M. Oblak, D.F. Paulonis, D.S. Duvall, Metall. Trans. 5 (1974) 143–153.

    Article  Google Scholar 

  37. G. Vanderschaeve, B. Escaig, Philos. Mag. A 48 (1983) 265–277.

    Article  Google Scholar 

  38. Y. Gai, R. Zhang, J. Yang, C. Cui, J. Qu, Mater. Sci. Eng. A 842 (2022) 143079.

    Article  Google Scholar 

  39. P. Zhang, Y. Yuan, Y.F. Gu, Y.Y. Dang, J.T. Lu, X.B. Zhao, J.C. Wang, C.Z. Zhu, C.X. Fan, Mater. Charact. 142 (2018) 101–108.

    Article  Google Scholar 

  40. C.L. Hale, W.S. Rollings, M.L. Weaver, Mater. Sci. Eng. A 300 (2001) 153–164.

    Article  Google Scholar 

  41. P. Zhang, Y. Yuan, S.C. Shen, B. Li, R.H. Zhu, G.X. Yang, X.L. Song, J. Alloy. Compd. 694 (2017) 502–509.

    Article  Google Scholar 

  42. M. Daly, T.L. Burnett, E.J. Pickering, O.C.G. Tuck, F. Léonard, R. Kelley, P.J. Withers, A.H. Sherry, Acta Mater. 130 (2017) 56–68.

    Article  Google Scholar 

  43. A. Pineau, A.A. Benzerga, T. Pardoen, Acta Mater. 107 (2016) 424–483.

    Article  Google Scholar 

  44. F.D. León-Cázares, R. Schlütter, T. Jackson, E.I. Galindo-Nava, C.M.F. Rae, Acta Mater. 182 (2020) 47–59.

    Article  Google Scholar 

  45. K. Chen, J. Dong, Z. Yao, T. Ni, M. Wang, Mater. Sci. Eng. A 738 (2018) 308–322.

    Article  Google Scholar 

  46. Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, G. Liu, Mater. Des. 55 (2014) 949–957.

    Article  Google Scholar 

  47. P. Rodriguez, Bull. Mater. Sci. 6 (1984) 653–663.

    Article  Google Scholar 

  48. G.M. Han, C.G. Tian, C.Y. Cui, Z.Q. Hu, X.F. Sun, Acta Metall. Sin. (Engl. Lett.) 28 (2015) 542–549.

    Article  Google Scholar 

  49. S.A. Nalawade, M. Sundararaman, R. Kishore, J.G. Shah, Scripta Mater. 59 (2008) 991–994.

    Article  Google Scholar 

  50. A. Sarkar, A. Nagesha, P. Parameswaran, R. Sandhya, K. Laha, Mater. Sci. Eng. A 660 (2016) 213–224.

    Article  Google Scholar 

  51. A.H.V. Pavan, R.L. Narayan, S.H. Li, K. Singh, U. Ramamurty, Mater. Sci. Eng. A 832 (2022) 142486.

    Article  Google Scholar 

  52. X. Wang, G. Han, C. Cui, S. Guan, J. Li, G. Hou, Y. Zhou, X. Sun, J. Mater. Sci. Technol. 35 (2019) 84–87.

    Article  Google Scholar 

  53. K.B.S. Rao, V. Seetharaman, S.L. Mannan, P. Rodriguez, High Temp. Mater. Process. 7 (1986) 63–81.

    Article  Google Scholar 

  54. J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1–157.

    Article  Google Scholar 

  55. C.V. Rao, N.C. Santhi Srinivas, G.V.S. Sastry, V. Singh, Mater. Sci. Eng. A 742 (2019) 44–60.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the State Key Lab of Advanced Metals and Materials in University of Science and Technology Beijing (No. 2022-Z21), China Postdoctoral Science Foundation (No. 2019M661738), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX22_1860), and Natural Science Foundation of Jiangsu Province (No. BK20220548).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Luo.

Ethics declarations

Conflict of interest

Rui Luo is a youth editorial board member for Journal of Iron and Steel Research International and was not involved in the editorial review or the decision to publish this article. All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Liu, T., Wei, Jb. et al. Temperature dependence in tensile properties and deformation behavior of GH4169 alloy. J. Iron Steel Res. Int. 30, 2566–2581 (2023). https://doi.org/10.1007/s42243-023-01050-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01050-z

Keywords

Navigation