Skip to main content
Log in

Simulation of gas–solid flow in sinter vertical cooling furnace

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The velocity distribution of sinter and gas in vertical cooling furnace (VCF) has an important influence on gas–solid heat transfer. Based on the slot model of single hopper in the VCF of Meishan Iron and Steel Co., Ltd., the velocity and particle size distribution of sinter and the velocity and pressure distribution of gas were studied using a computational fluid dynamics–discrete element method model to obtain the gas–solid flow rule in the VCF. The results showed that the velocity of sinter near the wall and the edge of vent cowl was lower than that in the rest of the same plane. Therefore, the rectangular section of the vertical cooling furnace can be divided into a quasi-static zone, a plug flow zone and a convergent flow zone according to the flow velocity of the sinter. The average particle size and the void fraction of sinter bed were distributed in "W" and "V" shape along the width direction, respectively. The distribution of gas velocity in the furnace cavity was uneven, and the high-velocity area gradually changed from the center to the edge of the furnace cavity with the rise of gas. Reducing the ratio of edge to center gas flow from 2.7:1 to 0.7:1 could improve the gas velocity, but could not change the gas velocity distribution. The gas velocity distribution was more affected by the average particle size distribution of the sinter bed. It was suggested that measures need be taken to adjust it to improve the gas velocity distribution in the VCF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.C. Guo, Z.X. Fu, Energy 35 (2010) 4356–4360.

    Article  Google Scholar 

  2. X.H. Zhang, Z. Chen, J.Y. Zhang, P.X. Ding, J.M. Zhou, Appl. Therm. Eng. 54 (2013) 7–15.

    Article  Google Scholar 

  3. F.Y. Tian, L.F. Huang, L.W. Fan, H.L. Qian, Z.T. Yu, Powder Technol. 301 (2016) 1284–1293.

    Article  Google Scholar 

  4. K. Sun, C.T. Tseng, D.S.H. Wong, S.S. Shieh, S.S. Jang, J.L. Kang, W.D. Hsieh, Energy 80 (2015) 275–283.

    Article  Google Scholar 

  5. J.J. Cai, H. Dong, The method and device of sintering waste heat recovery and utilization with vertical tank, CN 101655320B, China, 2011.

  6. H. Dong, L. Li, W.J. Liu, B. Wang, Y.S. Suo, J.J. Cai, Chin Metallurgy 22 (2012) No. 1, 6–11.

    Google Scholar 

  7. J.S. Feng, H. Dong, A.H. Wang, Q. Zhang, J.J. Cai, J. Iron Steel Res. 27 (2015) No. 6, 7–11.

    Google Scholar 

  8. F.Y. Tian, L.F. Huang, L.W. Fan, H.L. Qian, J.X. Gu, Z.T. Yu, Y.C. Hu, J. Ge, K.F. Cen, J. Zhejiang Univ. Sci. A (Appl. Phys. Eng.) 17 (2016) 89–100.

  9. H.Z. Li, J.Y. Gao, J.S. Feng, H. Dong, Y.W. Yang, J. Iron Steel Res. 30 (2018) 8–13.

    Google Scholar 

  10. Y. Peng, W.S. Wang, X.B. Shi, C.H. Guo, P. Xu, Sinter. Pelletiz. 44 (2019) No. 1, 6–8+27.

  11. J.S. Feng, S. Zhang, H. Dong, G. Pei, Powder Technol. 344 (2019) 177–182.

    Article  Google Scholar 

  12. S. Zhang, L. Zhao, J.S. Feng, X.F. Luo, H. Dong, Appl. Therm. Eng. 157 (2019) 113708.

    Article  Google Scholar 

  13. Z. Cui, W. Shao, Z.Y. Chen, L. Cheng, Appl. Energy 206 (2017) 1297–1308.

    Article  Google Scholar 

  14. Y. Zheng, H. Dong, J.J. Cai, J.S. Feng, L. Zhao, J.Y. Liu, S. Zhang, Appl. Therm. Eng. 151 (2019) 335–343.

    Article  Google Scholar 

  15. Z.D. Cheng, H.T. Wang, J.S. Feng, Y.F. Xia, H. Dong, Energies 14 (2021) 4522.

    Article  Google Scholar 

  16. L.S. Pan, X.L. Wei, Y. Peng, Y.J. Ma, B. Li, Appl. Therm. Eng. 127 (2017) 592–601.

    Article  Google Scholar 

  17. C.Y. Xu, Z.C. Liu, S.C. Wang, W. Liu, Energies 12 (2019) 385.

    Article  Google Scholar 

  18. J.P. Fu, J.J. Cai, J. Iron Steel Res. Int. 27 (2020) 898–912.

    Article  Google Scholar 

  19. W.Y. Wu, X.J. Liu, X. Liang, D.H. Xia, Int. J. Therm. Sci. 172 (2022) 107283.

    Article  Google Scholar 

  20. S. Zhang, L. Zhao, J.S. Feng, H. Dong, Int. J. Heat Mass Transfer 182 (2022) 122036.

    Article  Google Scholar 

  21. T.F. Qi, H.F. Li, Y.J. Zhang, L. Shao, Metals 12 (2022) 1187.

    Article  Google Scholar 

  22. Q.F. Hou, M. Samman, J. Li, A.B. Yu, ISIJ Int. 54 (2014) 1772–1780.

    Article  Google Scholar 

  23. H. Zhou, S.Y. Wang, B.B. Du, M.Y. Kou, Z.Y. Tang, J.H. Yang, S.L. Wu, D.Y. E, Int. J. Chem. React. Eng. 18 (2020) 20200012.

  24. M.H. Bai, S.F. Han, W.Y. Zhang, K. Xu, H. Long, Ironmak. Steelmak. 44 (2017) 685–691.

    Article  Google Scholar 

  25. H. Zhou, X. Tian, M.Y. Kou, S.L. Wu, Y.B. Shen, Y.T. Li, Y.S. Shen, Powder Technol. 376 (2020) 537–548.

    Article  Google Scholar 

  26. H. Zhou, K. Xu, X. Tian, M.Y. Kou, S.L. Wu, Y.S. Shen, Powder Technol. 392 (2021) 672–679.

    Article  Google Scholar 

  27. Z.S. Dong, Q.G. Xue, H.B. Zuo, X.F. She, J. Li, J.S. Wang, ISIJ Int. 56 (2016) 1588–1597.

    Article  Google Scholar 

  28. M.Y. Kou, S.L. Wu, G. Wang, B.J. Zhao, Q.W. Cai, Steel Res. Int. 86 (2015) 686–694.

    Article  Google Scholar 

  29. J.N.M. Batista, D.A. Santos, R. Béttega, Particuology 54 (2021) 91–101.

    Article  Google Scholar 

  30. T.F. Qi, J. Huang, J.J. Sun, Y.J. Zhang, J. Iron Steel Res. 34 (2022) 239–247.

    Google Scholar 

  31. X.K. Zhang, J. Xu, J.J. Sun, Y.J. Zhang, Z.H. Zhang, W. Ge, Chin. J. Theoret. Appl. Mech. 51 (2019) 64–73.

    Google Scholar 

Download references

Acknowledgements

Financial support provided by the Fundamental Research Funds for the Central Universities of China (N2225022) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-feng Li.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Tf., Li, Hf., Sun, Jj. et al. Simulation of gas–solid flow in sinter vertical cooling furnace. J. Iron Steel Res. Int. 30, 2133–2142 (2023). https://doi.org/10.1007/s42243-023-00983-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00983-9

Keywords

Navigation