Skip to main content
Log in

Modeling and Simulation of Heat Transfer Phenomena in an Annular Cooler of Iron Ore Sintering Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The iron ore sintering process is the second largest energy consuming process next to the blast furnace in overall integrated steel plant value chain. Sintering consists of two moving beds, namely a sintering machine, and an annular cooler. Once the sintering is completed, hot sinter is discharged on the annular cooler and air is blown from the bottom with blowers for cooling the sinter to normal temperature. The present work focuses on investigating the transient heat transfer phenomenon between cooling air and hot sinter for estimating the temperature profile of the moving sinter bed. An unsteady state, one-dimensional mathematical model is developed considering conservation of mass, momentum, and energy transfer. A parametric study is conducted to investigate the effect of various process conditions such as void fraction of bed, differential pressure below sinter cooler on temperature of gas and solid, velocity of gas, average bed temperature and heat transfer between gas and solid. The model validated with industrial process data showing a good agreement and the temperature profile along the cooler length is predicted for a real time process conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\({v}_{g}\) :

Superficial velocity of gas (m/s)

\({v}_{g}^{o}\) :

Actual velocity of gas (m/s)

\(p\) :

Absolute pressure (Pa)

\({D}_{p}\) :

Mean initial diameter of the particle (m)

\({C}_{\mathrm{p},g}, {C}_{\mathrm{p},s}\) :

Specific heat of gas and solid (J/kg K)

\({h}_{v}^{i-j}\) :

Volumetric heat transfer coefficient (W/m3 K)

\({h}^{i-j}\) :

Heat transfer coefficient between phases ‘i’ and ‘j’, (W/m2 K)

\(Nu\) :

Nusselt number

\({\mathrm{Re}}_{p}\) :

Particle Reynolds number

\({Pr}_{\mathrm{g}}\) :

Gas Prandtl’s number

\({K}_{\mathrm{g}}\) :

Thermal conductivity of gas (W/m K)

\({\Lambda }^{i-j}\) :

Surface area by unit volume of bed (m2/m3)

\(R\) :

Universal gas constant (J/mol K)

\({T}_{\mathrm{g}}\) and \({T}_{\mathrm{s}}\) :

Temperature of gas and solid (K)

\({V}_{\mathrm{cv}}\) :

Control volume of grid

\({\rho }_{\mathrm{g}}\), \({\rho }_{\mathrm{s}}\) :

Density of gas and solid (kg/m3)

\(\mu \) :

Dynamics viscosity of the gas (Pa s)

\({\varepsilon }_{b}\) :

Void fraction

\(\lambda \) :

Shape factor

\({\zeta }^{i-j}\) :

Fraction of the total specific surface area of the particles available for heat transfer between phases ‘i’ and ‘j

References

  1. Seenivasan R, Acharyulu A V, Sabariraj V, Arvind J, Rameshwar S, and Balachandran G, Ironmak Steelmak 48 (2021) 637.

    Article  CAS  Google Scholar 

  2. Ramos M V, Kasai E, Kano J, et al., ISIJ Int 40 (2000) 448.

    Article  CAS  Google Scholar 

  3. Komarov S V, Shibata H, Hayashi N, et al., J Iron Steel Res Int 17 (2010) 1.

    Google Scholar 

  4. Yang W, Ryu C, Choi S, et al., Met Mater Int 10 (2004) 493–500.

    Article  CAS  Google Scholar 

  5. Yang W, Choi S, Choi E S, et al., Combust Flame 145 (2006) 447.

    Article  CAS  Google Scholar 

  6. Caputo A C, Cardarelli G, and Pelagagge P M, Appl Therm Eng 16 (1996) 89.

    Article  CAS  Google Scholar 

  7. Leong J C, Jin K W, Shiau J S, Jeng T M, and Tai C H, Int J Miner Metall 16 (2009) 265.

    Article  CAS  Google Scholar 

  8. Jang J Y, and Chiu Y W, Appl Therm Eng 29 (2009) 2895.

    Article  CAS  Google Scholar 

  9. Wen Z, Shi H Z, Zhang X, Lou G F, Liu X L, Dou R F, and Su F Y, Ironmak Steelmak 38 (2011) 525.

    Article  CAS  Google Scholar 

  10. Guo L, Wang J, and Wang Y, Adv Mat Res 816–817 (2013) 216.

    Google Scholar 

  11. Liu Y, Wang J, Yuan X, Yang J, and Wang Q W, AIP Conf Proc 1547 (2013) 788.

    Article  Google Scholar 

  12. Tian W Y, Zhang J Y, Dai C D, and Long X Y, Ironmak Steelmak 42 (2015) 97.

    Article  CAS  Google Scholar 

  13. Nath N K, Da Silva A J, and Chakraborti N, Steel Res 68 (1997) 285.

    Article  CAS  Google Scholar 

  14. Nath N K, and Mitra K, Ironmak Steelmak 31 (2004) 199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Seenivasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seenivasan, R., Abhale, P.B., Mohanty, B. et al. Modeling and Simulation of Heat Transfer Phenomena in an Annular Cooler of Iron Ore Sintering Process. Trans Indian Inst Met 76, 3507–3515 (2023). https://doi.org/10.1007/s12666-023-03041-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03041-w

Keywords

Navigation