Skip to main content
Log in

Kinetic study on microwave-enhanced direct reduction of titanomagnetite concentrate with coal

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Titanomagnetite concentrate is one of the important titanium resources. The apparent activation energy (\({E}_{\mathrm{a}}\)) of the direct reduction of titanomagnetite concentrate was composed of two parts (average activation energy: \({\overline{E} }_{\mathrm{a}}={\overline{E} }_{\mathrm{a}-\mathrm{L}}+{E}_{\mathrm{a}-\mathrm{Step }1}\), where \({E}_{\mathrm{a}-\mathrm{L}}\) is the lattice energy of titanomagnetite concentrate, and \({E}_{\mathrm{a}-\mathrm{Step\ }1}\) is the activation energy of step 1 for the reduction of titanomagnetite concentrate in the route of Fe3+ \(\mathop{\longrightarrow}\limits^{\rm{Step}1}\) Fe2+ \(\mathop{\longrightarrow}\limits^{\rm{Step}2}\) Fe2O2+ \(\mathop{\longrightarrow}\limits^{\rm{Step}3}\) Fe0). \({\overline{E} }_{\mathrm{a}}\) (583.43 kJ/mol), \({\overline{E} }_{\mathrm{a}-\mathrm{L}}\) (426.4 kJ/mol), and \({E}_{\mathrm{a}-\mathrm{Step}1}\) (157.0 kJ/mol) were calculated by the model-free methods based on thermogravimetry and Dmol3 module. Combined with the analysis of activation energy fluctuation and the shifting trend of related mechanism functions, the reduction kinetic system with three main characteristics, namely nucleation, diffusion and concentration fluctuation, was established. In addition, the scanning electron microscopy comparison analysis of the samples from microwave reduction and conventional reduction shows that microwave heating could realize the microstructure Ti–Fe separation and reduce the lattice energy of the titanomagnetite concentrate, thus enhancing the reduction process by 7.68% from the perspective of activation energy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.H. Lee, Y. Kalcheim, J. del Valle, I.K. Schuller, ACS Appl. Mater. Interfaces 13 (2021) 887–896.

    Article  Google Scholar 

  2. J. Ye, D. Yuan, M. Ding, Y. Long, T. Long, L. Sun, C. Jia, J. Power Sources 482 (2021) 229032.

    Article  Google Scholar 

  3. Q. Sun, M. Li, X.L. Shi, S.D. Xu, W.D. Liu, M. Hong, W.Y. Lyu, Y. Yin, M. Dargusch, J. Zou, Z.G. Chen, Adv. Energy Mater. 11 (2021) 2100544.

    Article  Google Scholar 

  4. N. Kesharwani, N. Chaudhary, C. Haldar, Catal. Lett. 151 (2021) 3562–3581.

    Article  Google Scholar 

  5. R.R. Moskalyk, A.M. Alfantazi, Miner. Eng. 16 (2003) 793–805.

    Article  Google Scholar 

  6. M. Anpo, M. Takeuchi, J. Catal. 216 (2003) 505–516.

    Article  Google Scholar 

  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269–271.

    Article  Google Scholar 

  8. X. Nie, W. He, S. Zang, X. Wang, J. Zhao, Surf. Coat. Technol. 253 (2014) 68–75.

    Article  Google Scholar 

  9. Y. Xie, W. Zhai, L. Chen, J. Chang, X. Zheng, C. Ding, Acta Biomater. 5 (2009) 2331–2337.

    Article  Google Scholar 

  10. L. Benea, E. Mardare-Danaila, M. Mardare, J.P. Celis, Corros. Sci. 80 (2014) 331–338.

    Article  Google Scholar 

  11. H. Sun, A. Ajala, Z. Wang, F. Pan, Q. Zhu, in: Seminar on Clean Utilization of Non-ferrous Metals Resources and Energy Conservation and Emission Reduction, The Nonferrous Metals Society of China, Kunming, China, 2016, pp. 15–19.

    Google Scholar 

  12. W. Li, G.Q. Fu, M.S. Chu, M.Y. Zhu, Steel Res. Int. 88 (2017) 1600120.

    Article  Google Scholar 

  13. M. Zhou, T. Jiang, S. Yang, X. Xue, Int. J. Miner. Process. 142 (2015) 125–133.

    Article  Google Scholar 

  14. Z. Yu, G. Li, T. Jiang, Y. Zhang, F. Zhou, Z. Peng, ISIJ Int. 55 (2015) 907–909.

    Article  Google Scholar 

  15. D. Chen, H. Zhao, G. Hu, T. Qi, H. Yu, G. Zhang, L. Wang, W. Wang, J. Hazard. Mater. 294 (2015) 35–40.

    Article  Google Scholar 

  16. S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, China Metallurgy 26 (2016) No. 10, 40–44.

    Google Scholar 

  17. W. Yu, X. Wen, J. Chen, J. Kuang, Q. Tang, Y. Tian, J. Fu, W. Huang, T. Qiu, Minerals 7 (2017) 220.

    Article  Google Scholar 

  18. P. Liu, L. Zhang, B. Liu, G. He, J. Peng, M. Huang, Int. J. Miner. Metall. Mater. 28 (2021) 88–97.

    Article  Google Scholar 

  19. C. Lv, K. Yang, S. Wen, S. Bai, Q. Feng. JOM 69 (2017) 1801–1805.

    Article  Google Scholar 

  20. T. Jiang, S. Wang, Y. Guo, F. Chen, F. Zheng. Metals 6 (2016) 107.

    Article  Google Scholar 

  21. S. Wang, Y. Guo, T. Jiang, L. Yang, F. Chen, F. Zheng, X. Xie, M. Tang, JOM 69 (2017) 1646–1653.

    Article  Google Scholar 

  22. S. Wang, Y. Guo, T. Jiang, F. Chen, F. Zheng, M. Tang, L. Yang, G. Qiu, Trans. Nonferrous Met. Soc. China 28 (2018) 2528–2537.

    Article  Google Scholar 

  23. Y. Zhao, T. Sun, H. Zhao, C. Xu, S. Wu, ISIJ Int. 59 (2019) 981–987.

    Article  Google Scholar 

  24. J. Chen, W. Chen, L. Mi, Y. Jiao, X. Wang, Metals 9 (2019) 95.

    Article  Google Scholar 

  25. D. Chen, B. Song, L. Wang, T. Qi, Y. Wang, W. Wang, Miner. Eng. 24 (2011) 864–869.

    Article  Google Scholar 

  26. D. Huang, New process and comparative study of utilization of vanadium-titanium magnetite, Central South University, Changsha, China, 2011.

    Google Scholar 

  27. A.A. Adetoro, H. Sun, S. He, Q. Zhu, H. Li, Metall. Mater. Trans. B 49 (2018) 846–857.

    Article  Google Scholar 

  28. S.S. Liu, Y.F. Guo, G.Z. Qiu, T. Jiang, Rare Met. 39 (2020) 1348–1352.

    Article  Google Scholar 

  29. E. Cruz-Sánchez, J.F. Álvarez-Castro, J.A. Ramirez Picado, J.A. Matutes-Aquino, J. Alloy. Compd. 369 (2004) 265–268.

    Article  Google Scholar 

  30. R.R. Mishra, A.K. Sharma, Composites: Part A 81 (2016) 78–97.

    Article  Google Scholar 

  31. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257 (2011) 2717–2730.

    Article  Google Scholar 

  32. H.Z. Zhang, Nonferrous Metals 46 (1994) No. 1, 41–44.

    Google Scholar 

  33. P.M. Guo, P. Zhao, J. Iron Steel Res. 19 (2007) No. 5, 25–28+33.

  34. P. Liu, C. Liu, T. Hu, J. Shi, L. Zhang, B. Liu, J. Peng, Chem. Eng. J. 408 (2021) 127355.

    Article  Google Scholar 

  35. M.J. Starink, Thermochim. Acta 404 (2003) 163–176.

    Article  Google Scholar 

  36. J.H. Flynn, L.A. Wall. Polym. Lett. 4 (1966) 323–328.

    Article  Google Scholar 

  37. H.E. Kissinger, J. Res. Natl. Bur. Stand. 57 (1956) 217–221.

    Article  Google Scholar 

  38. A.W. Coats, J.P. Redfern, Nature 201 (1994) 68–69.

    Article  Google Scholar 

  39. A.W. Coats, J.P. Redfern, Polym. Lett. 3 (1965) 917–920.

    Article  Google Scholar 

  40. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520 (2011) 1–19.

    Article  Google Scholar 

  41. S. Vyazovkin, K. Chrissafis, M.L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J.J. Suñol, Thermochim. Acta 590 (2014) 1–23.

    Article  Google Scholar 

  42. I. Oluwoye, Z. Zeng, S. Mosallanejad, M. Altarawneh, J. Gore, B.Z. Dlugogorski, Chem. Eng. J. 411 (2021) 128427.

    Article  Google Scholar 

  43. P. Liu, C. Liu, S. Li, B. Liu, J. Shi, L. Zhang, J. Peng, Environ. Prog. Sustain. Energy 38 (2019) 13201.

    Article  Google Scholar 

  44. A.I. Rusanov, Russ. Chem. Rev. 33 (1964) 385–399.

    Article  Google Scholar 

  45. C. Liu, J. Peng, A. Ma, L. Zhang, J. Li, J. Hazard. Mater. 322 (2017) 325–333.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2018YFC1900500), Yunnan Province Special Key Project of Basic Research (202101as070014), and Scientific Research Fund of Panzhihua University (XJ2022001301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing-guo Liu or Li-bo Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Gong, Sy., Chao, Yw. et al. Kinetic study on microwave-enhanced direct reduction of titanomagnetite concentrate with coal. J. Iron Steel Res. Int. 30, 429–445 (2023). https://doi.org/10.1007/s42243-022-00888-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00888-z

Keywords

Navigation