Skip to main content

Advertisement

Log in

Effect of austenitizing condition on mechanical properties, microstructure and precipitation behavior of AISI H13 steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effects of austenitizing temperature (1223, 1303, and 1373 K) and holding time (1–1500 s) on the microstructure, mechanical properties, and precipitation behavior of the H13 hot work die steel were investigated. The results indicate a softening phenomenon when H13 steel is austenitized at 1303 K beyond 900 s and 1373 K beyond 600 s, respectively. For the sample held for 1200 s, the tensile strength is found capable of reaching up to 2.2 GPa when quenched from a temperature above 1303 K. Meanwhile, prior-austenite grain size increases with the increase in austenitizing temperature. The kinetic behavior of the precipitates (mainly MC-type carbides) in H13 steel could be elaborated through the principles set forth by the Arrhenius and Avrami equations. Finally, the comprehensive strengthening of the H13 steel was discussed in detail. The results show that the activation energy of the transformed fraction of carbides is higher than that of the diffusion process for common alloying elements (Cr, V, Mo, and Ni) found in the austenite. This suggests that it would be difficult for precipitates to dissolve into the matrix when H13 steel is austenitized at high temperatures. With the increasing austenitizing temperature, the precipitation fraction decreases, and the dislocation density increases. The dislocation strengthening is regarded as the dominant strengthening contributed to yield strength in as-quenched H13 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V.L. Nguyen, E.A. Kim, J. Yun, J. Choe, D.Y. Yang, H.S. Lee, C.W. Lee, J.H. Yu, Metall. Mater. Trans. A 50 (2019) 523–528.

    CAS  Google Scholar 

  2. W.J. Zhou, J. Zhu, Z.H. Zhang, Metall. Mater. Trans. A 51 (2020) 4662–4673.

    CAS  Google Scholar 

  3. J. Zhu, Z.H. Zhang, J.X. Xie, J. Iron Steel Res. Int. 28 (2021) 1268–1281.

    CAS  Google Scholar 

  4. Y. Yang, J.H. Liu, Y.P. Bao, P. Zhao, N. Wei, J.J. Liu, Iron and Steel 46 (2011) No. 9, 45–49.

    Google Scholar 

  5. X.J. Wang, G.Q. Li, Y. Liu, Y.L. Cao, F. Wang, Q. Wang, Metals 9 (2019) 1247.

    CAS  Google Scholar 

  6. D.S. Ma, J. Zhou, Z.Z. Chen , Z.K. Zhang, Q.A. Chen, D.H. Li, J. Iron Steel Res. Int. 16 (2009) No. 5, 56–60.

    CAS  Google Scholar 

  7. M. Kang, G. Park, J.G. Jung, B.H. Kim, Y.K. Lee, J. Alloy. Compd. 627 (2015) 359–366.

    CAS  Google Scholar 

  8. J. Zhu, Z.H. Zhang, J.X. Xie, Mater. Sci. Eng. A 752 (2019) 101–114.

    CAS  Google Scholar 

  9. A.G. Ning, W.W. Mao, H.J. Guo, X.C. Chen, Chin. J. Process Eng. 14 (2014) 1041–1046.

    CAS  Google Scholar 

  10. A.G. Ning, H.J. Guo, X.C. Chen, X.L. Sun, J. Univ. Sci. Technol. Beijing 36 (2014) 895–902.

    CAS  Google Scholar 

  11. W.W. Song, Y.A. Min, X.C. Wu, Trans. Mater. Heat Treat. 30 (2009) No. 5, 122–126.

    CAS  Google Scholar 

  12. J. Guo, X.R. Chen, S.W. Han, Y. Yan, H.J. Guo, Int. J. Miner. Metall. Mater. 27 (2020) 328–339.

    CAS  Google Scholar 

  13. M. Kehoe, P.M. Kelly, Scripta Metall. 4 (1970) 473–476.

    CAS  Google Scholar 

  14. S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng. A 438–440 (2006) 237–240.

    Google Scholar 

  15. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, Scripta Mater. 58 (2008) 492–495.

    CAS  Google Scholar 

  16. Y.K. Kim, K.S. Kim, Y.B. Song, J.H. Park, K.A. Lee, J. Mater. Sci. Technol. 66 (2021) 36–45.

    CAS  Google Scholar 

  17. L.A. Norströn, Scand. J. Metall. 5 (1976) 41–48.

    Google Scholar 

  18. J. Wang, Z.N. Xu, X.F. Lu, J. Mater. Eng. Perform. 29 (2020) 1849–1859.

    CAS  Google Scholar 

  19. G.E. Totten, Steel heat treatment: metallurgy and technologies, CRC Press, Boca Raton, FL, USA, 2006.

    Google Scholar 

  20. T.S. Liu, S.W. Sun, W.X. Zhou, X.Y. Shi, Y.S. Guo, Y.H. Song, B. Wang, Phys. Testing Chem. Anal. Part A (Phys. Anal.) 49 (2013) 808–812.

    CAS  Google Scholar 

  21. C. Sun, P.X. Fu, X.P. Ma, H.H. Liu, N.Y. Du, Y.F. Cao, H.W. Liu, D.Z. Li, J. Mater. Res. Technol. 9 (2020) 7701–7710.

    CAS  Google Scholar 

  22. E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 98 (2015) 81–93.

    CAS  ADS  Google Scholar 

  23. A.L. Klug HP, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, USA, 1974, pp. 150–170.

    Google Scholar 

  24. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater. 52 (2004) 4589–4599.

    CAS  ADS  Google Scholar 

  25. Y. Mazaheri, A. Kermanpur, A. Najafizadeh, ISIJ Int. 55 (2015) 218–226.

    CAS  Google Scholar 

  26. G.E. Pellissier, S.M. Purdy, Stereology and quantitative metallography, American Society for Testing & Materials, Philadelphia, USA, 1972.

    Google Scholar 

  27. W.A. Johnson, R.F. Mehl, Trans. Metall. Soc. AIME 135 (1939) 416–442.

    Google Scholar 

  28. M. Avrami, J. Chem. Phys. 7 (1939) 1103–1112.

    CAS  ADS  Google Scholar 

  29. M. Avrami, J. Chem. Phys. 8 (1940) 212–224.

    CAS  ADS  Google Scholar 

  30. M. Avrami, J. Chem. Phys. 9 (1941) 177–184.

    CAS  ADS  Google Scholar 

  31. P. Watté, J. Van Humbeeck, E. Aernoudt, Scripta Mater. 34 (1996) 89–95.

    Google Scholar 

  32. A.W. Thompson, M.I. Baskes, W.F. Flanagan, Acta Metall. 21 (1973) 1017–1028.

    CAS  Google Scholar 

  33. J.H. Gao, S.H. Jiang, H.R. Zhang, Y.H. Huang, D.K. Guan, Y.D. Xu, S.K. Guan, L.A. Bendersky, A.V. Davydov, Y. Wu, H.H. Zhu, Y.D. Wang, Z.P. Lu, W.M. Rainforth, Nature 590 (2021) 262–267.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Q. Li, Mater. Sci. Eng. A 361 (2003) 385–391.

    Google Scholar 

  35. Z.Q. Cui, Y.C. Qin, Metal science and heat treatment, Machinery Industry Press, Beijing, China, 2007.

    Google Scholar 

  36. A. Arlazarov, E. Soares Barreto, N. Kabou, D. Huin, Metall. Mater. Trans. A 51 (2020) 6159–6166.

    CAS  Google Scholar 

  37. X.D. Li, Y.R. Fan, X.P. Ma, S.V. Subramanian, C.J. Shang, Mater. Des. 67 (2015) 457–463.

    CAS  Google Scholar 

  38. X.D. Li, C.J. Shang, X.P. Ma, B. Gault, S.V. Subramanian, J.B. Sun, R.D.K. Misra, Scripta Mater. 139 (2017) 67–70.

    CAS  Google Scholar 

  39. X.D. Tan, H.S. He, W.J. Lu, L. Yang, B. Tang, J. Yan, Y.B. Xu, D. Wu, Mater. Sci. Eng. A 771 (2020) 138629.

    CAS  Google Scholar 

  40. M. Charleux, W.J. Poole, M. Militzer, A. Deschamps, Metall. Mater. Trans. A 32 (2001) 1635–1647.

    Google Scholar 

  41. N.J. Petch, J. Iron Steel Inst. 174 (1953) 25–28.

    CAS  Google Scholar 

  42. J. Majta, J.G. Lenard, M. Pietrzyk, Mater. Sci. Eng. A 208 (1996) 249–259.

    Google Scholar 

  43. Q.L. Yong, Secondary phases in steels, Metallurgical industry press, Beijing, China, 2006, 61–82.

    Google Scholar 

  44. A.C. Kneissl, C.I. Garcia, A.J. DeArdo, in: G. Tither, S.H. Zhang (Eds.), HSLA Steels: Processing, Properties and Applications, JOM, 1990, pp. 99–105.

  45. J. Fu, G.Q. Li, X.P. Mao, K.M. Fang, Metall. Mater. Trans. A 42 (2011) 3797–3812.

    CAS  Google Scholar 

  46. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59 (2011) 5845–5858.

    CAS  ADS  Google Scholar 

  47. R.K. Islamgaliev, M.A. Nikitina, A.V. Ganeev, V.D. Sitdikov, Mater. Sci. Eng. A 744 (2019) 163–170.

    CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the China Scholarship Council under Grant No. 201806935054 and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China, under Grant No. 201802035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-gang Ning.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Ag., Liu, Y., Gao, R. et al. Effect of austenitizing condition on mechanical properties, microstructure and precipitation behavior of AISI H13 steel. J. Iron Steel Res. Int. 31, 143–156 (2024). https://doi.org/10.1007/s42243-022-00837-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00837-w

Keywords

Navigation