Skip to main content
Log in

Application of fractal theory to study morphology of manganese sulfide inclusion in resulfurized free-cutting steels

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The morphology and distribution of manganese sulfide (MnS) inclusions have a significant influence on the comprehensive performance, which is an important research field for resulfurized steels. Based on the experiments of non-aqueous electrolyte and scanning electron microscope observation, the fractal theory was employed to study the three-dimensional morphologies of MnS inclusions. The results showed that the edge fractal dimension of MnS inclusions was between 1.59 and 1.88. In addition, similar morphology of MnS inclusions had a close fractal dimension. The MnS edge fractal dimension is highly positively correlated with the morphological parameters. The multifractal spectrums of MnS inclusions on two-dimensional plane of as-cast and as-rolled resulfurized free-cutting steels were calculated. The large-size MnS inclusions belong to large probability subset, while the small-size MnS inclusions belong to small probability subset. The multifractal spectrum can truly and effectively reflect the difference and non-uniformity of distribution of MnS inclusions on 2D plane. On the premise of similar content of MnS, with the refinement of MnS inclusions, the multifractal spectrum width and the multifractal spectrum symmetry parameter were decreased. The multifractal spectrum provides a new method for studying the second phase in materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Shen, D. Zhang, H. Zhang, K. Ai, M. Zhao, Z. Zeng, J. Fu, Ironmak. Steelmak. 48 (2021) 1179–1186.

    Article  Google Scholar 

  2. H. Liu, D. Hu, J. Fu, Materials 12 (2019) 2028.

    Article  Google Scholar 

  3. X. Wu, L.P. Wu, J.B. Xie, P. Shen, J.X. Fu, Metall. Res. Technol. 117 (2020) 107.

    Article  Google Scholar 

  4. D. Jia, L. Zhong, J. Yu, Z. Liu, L. Yuan, C. Tian, W. Dai, Metall. Mater. Trans. B 52 (2021) 3756–3766.

    Article  Google Scholar 

  5. Q. Tian, X. Xu, J. Li, N. Liu, X. Wu, P. Shen, J. Fu, Metall. Mater. Trans. B 52 (2021) 2355–2363.

    Article  Google Scholar 

  6. C. Wang, X.G. Liu, J.T. Gui, Z.L. Du, Z.F. Xu, B.F. Guo, Vacuum 174 (2020) 109209.

    Article  Google Scholar 

  7. X.G. Liu, C. Wang, Q.F. Deng, B.F. Guo, J. Iron Steel Res. Int. 26 (2019) 941–952.

    Article  Google Scholar 

  8. Q.S. Zhang, Y. Min, J.J. Xu, C.J. Liu, J. Iron Steel Res. Int. 27 (2020) 631–642.

    Article  Google Scholar 

  9. A.E. da Silva, L.R.R. da Silva, A. dos Reis, Á.R. Machado, W.L. Guesser, E.O. Ezugwu, Int. J. Adv. Manuf. Technol. 106 (2020) 3389–3407.

    Article  Google Scholar 

  10. P. Shen, L. Zhou, Q. Yang, Z. Zeng, K. Ai, J. Fu, Metall. Res. Technol. 117 (2020) 615.

    Article  Google Scholar 

  11. R. Sakaguchi, T. Shiraiwa, P. Chivavibul, T. Kasuya, M. Enoki, N. Yamashita, H. Yokota, Y. Matsui, A. Kazama, K. Ozaki, H. Takamatsu, ISIJ Int. 60 (2020) 1714–1723.

    Article  Google Scholar 

  12. C.E. Sims, F.B. Dahle, Trans. Am. Foundrymen's Assoc. 46 (1938) 65–132.

    Google Scholar 

  13. K. Oikawa, H. Ohtani, K. Ishida, T. Nishizawa, ISIJ Int. 35 (1995) 402–408.

    Article  Google Scholar 

  14. X. Zhang, L. Zhang, W. Yang, Y. Wang, Y. Liu, Y. Dong, Metall. Mater. Trans. B 48 (2017) 701–712.

    Article  Google Scholar 

  15. Y. Zhao, Y. Luo, Z. Zhang, H. Zhang, X. Guo, S. Wang, H. Cui, Y. Zhang, Materials 12 (2019) 3941.

    Article  Google Scholar 

  16. A. Pander, T. Onishi, A. Hatta, H. Furuta, Mater. Charact. 160 (2020) 110086.

    Article  Google Scholar 

  17. X. Wei, M. Xu, J. Chen, C. Yu, J. Chen, H. Lu, J. Xu, Mater. Charact. 145 (2018) 65–76.

    Article  Google Scholar 

  18. J. Cao, Z. Hou, D. Guo, Z. Guo, P. Tang, J. Mater. Sci. 54 (2019) 12851–12862.

    Article  Google Scholar 

  19. M. Tarafder, P. Sinha, A. Kundu, M. Strangwood, C. Davis, Mater. Charact. 85 (2013) 92–99.

    Article  Google Scholar 

  20. H. Tozawa, Y. Kato, K. Sorimachi, T. Nakanishi, ISIJ Int. 39 (1999) 426–434.

    Article  Google Scholar 

  21. W.C. Doo, D.Y. Kim, S.C. Kang, K.W. Yi, ISIJ Int. 47 (2007) 1070–1072.

    Article  Google Scholar 

  22. S. Yamashita, T. Ogura, S. Ishimura, M. Sasabe, Trans. Iron Steel Inst. Jpn. 88 (2002) 444–449.

    Article  Google Scholar 

  23. T. Li, S.i. Shimasaki, S. Taniguchi, S. Narita, K. Uesugi, ISIJ Int. 56 (2016) 1989–1995.

    Article  Google Scholar 

  24. L. Hong, W. Xinhua, Y. Sasaki, M. Hino, Mater. Trans. 48 (2007) 2170–2173.

    Article  Google Scholar 

  25. H. Lei, Y. Zhao, D.Q. Geng, ISIJ Int. 54 (2014) 1629–1637.

    Article  Google Scholar 

  26. D. Zhang, P. Shen, J.B. Xie, J.M. An, Z.Z. Huang, J.X. Fu, J. Iron Steel Res. Int. 26 (2019) 275–284.

    Article  Google Scholar 

  27. R. Lopes, N. Betrouni, Med. Image Anal. 13 (2009) 634–649.

    Article  Google Scholar 

  28. D.A. Russell, J.D. Hanson, E. Ott, Phys. Rev. Lett. 45 (1980) 1175–1178.

    Article  MathSciNet  Google Scholar 

  29. A.N.D. Posadas, D. Giménez, M. Bittelli, C.M.P. Vaz, M. Flury, Soil Sci. Soc. Am. J. 65 (2001) 1361–1367.

    Article  Google Scholar 

  30. A. Chhabra, R.V. Jensen, Phys. Rev. Lett. 62 (1989) 1327–1330.

    Article  MathSciNet  Google Scholar 

  31. H.G.E. Hentschel, I. Procaccia, Phys. D (Amsterdam, Neth.) 8 (1983) 435–444.

    Article  Google Scholar 

  32. J.B. Xie, D. Zhang, Q.K. Yang, J.M. An, Z.Z. Huang, J.X. Fu, Ironmak. Steelmak. 46 (2019) 564–573.

    Article  Google Scholar 

  33. J.B. Xie, T. Fan, H. Sun, Z.Q. Zeng, J.X. Fu, Met. Mater. Int. 27 (2021) 1416–1427.

    Article  Google Scholar 

  34. D.W. Cooper, Heredity 23 (1968) 614–617.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully express their appreciation to National Key Research and Development Program of China (Grant No. 2018YFB0704400) and National Natural Science Foundation of China (Grant Nos. 51874195 and 52074179) for supporting this work. One of the authors, Xiang-yu Xu, gratefully acknowledges support from the Youth Program of National Natural Science Foundation of China (Grant No. 52104335) and Shanghai “Super Postdoctoral” Incentive Plan (Grant No. 2020194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-xun Fu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Xy., Zeng, Zq., Tian, Qr. et al. Application of fractal theory to study morphology of manganese sulfide inclusion in resulfurized free-cutting steels. J. Iron Steel Res. Int. 30, 137–149 (2023). https://doi.org/10.1007/s42243-022-00826-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00826-z

Keywords

Navigation