Skip to main content
Log in

Hot cracking behavior of large size GH4742 superalloy vacuum induction melting ingot

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The developing of large size superalloy vacuum induction melting (VIM) ingots is limited owing to hot cracking. The hot cracking behavior of the large size GH4742 superalloy VIM ingot was investigated via experiment and simulation. The microstructure was examined by optical microscopy, and element segregation was investigated by electron probe microanalysis. The solidification temperature range and yield strength at high temperature (YSHT) were calculated by JMatPro software. The results show that the variations of microstructure and element segregation in different locations are caused by different cooling rates. Moreover, the larger secondary dendrite arm spacing and serious element segregation of Nb accelerate hot cracking of the VIM ingot. In addition, the solidification temperature range is wider, and YSHT is lower in center than at edge of the ingot. Therefore, the hot cracking susceptibility is the highest in the center of the GH4742 superalloy VIM ingot. The critical criterion of element segregation for hot cracking is that the partition coefficient of Nb should be larger than 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen, M.S. Chen, Vacuum 137 (2017) 104–114.

    Article  Google Scholar 

  2. G.D. Zhao, X.M. Zang, W.R. Sun, J. Iron Steel Res. Int. 28 (2021) 98–110.

    Article  Google Scholar 

  3. Y.X. Zhu, C. Li, Y.C. Liu, Z.Q. Ma, H.Y. Yu, J. Iron Steel Res. Int. 27 (2020) 1179–1189.

    Article  Google Scholar 

  4. G. Zhou, H. Ding, F.R. Cao, B.J. Zhang, J. Mater. Sci. Technol. 30 (2014) 217–222.

    Article  Google Scholar 

  5. W.W. Kong, C. Yuan, B.N. Zhang, H.Y. Qin, G.P. Zhao, Mater. Sci. Eng. A 751 (2019) 226–236.

    Article  Google Scholar 

  6. F. D’Elia, C. Ravindran, D. Sediako, Mater. Sci. Eng. A 624 (2015) 169–180.

    Article  Google Scholar 

  7. Y.S. Wang, B.D. Sun, Q.D. Wang, Y.P. Zhu, W.J. Ding, Mater. Lett. 53 (2002) 35–39.

    Article  Google Scholar 

  8. N. Khodaei, A.B. Phillion, Metall. Mater. Trans. B 52 (2021) 1424–1435.

    Article  Google Scholar 

  9. G. Razaz, T. Carlberg, Metall. Mater. Trans. A 50 (2019) 3842–3854.

    Article  Google Scholar 

  10. A. Hamadellah, A. Bouayad, C. Gerometta, J. Mater. Process. Technol. 244 (2017) 282–288.

    Article  Google Scholar 

  11. M. Bellet, G.H. Qiu, J.M. Carpreau, J. Mater. Process. Technol. 230 (2016) 143–152.

    Article  Google Scholar 

  12. F. D’Elia, C. Ravindran, D. Sediako, K.U. Kainer, N. Hort, Mater. Des. 64 (2014) 44–55.

    Article  Google Scholar 

  13. P. Gunde, A. Schiffl, P.J. Uggowitzer, Mater. Sci. Eng. A 527 (2010) 7074–7079.

    Article  Google Scholar 

  14. D.G. Eskin, Suyitno, L. Katgerman, Prog. Mater. Sci. 49 (2004) 629–711.

  15. Z.X. Shi, J.X. Dong, M.C. Zhang, L. Zheng, Trans. Nonferrous Met. Soc. China 24 (2014) 2737–2751.

    Article  Google Scholar 

  16. Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, N. Hort, Mater. Des. 47 (2013) 90–100.

    Article  Google Scholar 

  17. D.G. Eskin, L. Katgerman, Suyitno, J.F. Mooney, Metall. Mater. Trans. A 35 (2004) 1325–1335.

  18. Suyitno, W.H. Kool, L. Katgerman, Metall. Mater. Trans. A 36 (2005) 1537–1546.

  19. D. Heydari, A.S. Fard, A. Bakhshi, J.M. Drezet, J. Mater. Process. Technol. 214 (2014) 681–687.

    Article  Google Scholar 

  20. B. Zhou, S. Lu, K.L. Xu, C. Xu, Z.Y. Wang, B.J. Wang, Trans. Nonferrous Met. Soc. China 30 (2020) 318–332.

    Article  Google Scholar 

  21. D.B. Karunakar, R.N. Rai, S. Patra, G.L. Datta, Int. J. Adv. Manuf. Technol. 45 (2009) 851–858.

    Article  Google Scholar 

  22. Q.L. Bai, Y. Li, H.X. Li, Q. Du, J.S. Zhang, L.Z. Zhuang, Metall. Mater. Trans. A 47 (2016) 4080–4091.

    Article  Google Scholar 

  23. T.A. Davis, L. Bichler, F. D'Elia, N. Hort, J. Alloy. Compd. 759 (2018) 70–79.

    Article  Google Scholar 

  24. J.F. Song, Z. Wang, Y.D. Huang, A. Srinivasan, F. Beckmann, K.U. Kainer, N. Hort, Mater. Des. 87 (2015) 157–170.

    Article  Google Scholar 

  25. L. Han, Y.B. Wang, Y. Zhang, C. Lu, C.W. Fei, Y.J. Zhao, Int. J. Fatigue 150 (2021) 106306.

    Article  Google Scholar 

  26. H.Y. Wu, X.L. Zhuang, Y. Nie, Y.P. Li, L. Jiang, Mater. Sci. Eng. A 754 (2019) 29–37.

    Article  Google Scholar 

  27. Y.C. Lin, L. Li, D.G. He, M.S. Chen, G.Q. Liu, Mater. Sci. Eng. A 679 (2017) 401–409.

    Article  Google Scholar 

  28. A. Heckl, R. Rettig, R.F. Singer, Metall. Mater. Trans. A 41 (2010) 202–211.

    Article  Google Scholar 

  29. L.F. Zhang, Z.W. Huang, L. Jiang, J.H. Luan, Z.B. Jiao, C.T. Liu, Mater. Sci. Eng. A 744 (2019) 481–489.

    Article  Google Scholar 

  30. Q. Li, J. Xie, J.J. Yu, D.L. Shu, G.C. Hou, X.F. Sun, Y.Z. Zhou, J. Alloy. Compd. 854 (2021) 156027.

  31. X. Shi, S.C. Duan, W.S. Yang, H.J. Guo, J. Guo, Metall. Mater. Trans. B 49 (2018) 1883–1897.

    Article  Google Scholar 

  32. L. Gong, B. Chen, L. Zhang, Y.C. Ma, K. Liu, J. Mater. Sci. Technol. 34 (2018) 811–820.

    Article  Google Scholar 

  33. Y.Z. Zhou, A. Volek, Scripta Mater. 56 (2007) 537–540.

    Article  Google Scholar 

  34. H.N. Moosavy, M.R. Aboutalebi, S.H. Seyedein, C. Mapelli, J. Mater. Process. Technol. 213 (2013) 1875–1884.

    Article  Google Scholar 

  35. D.G. Eskin, L. Katgerman, Metall. Mater. Trans. A 38 (2007) 1511–1519.

    Article  Google Scholar 

  36. Z. Zhao, J.X. Dong, J. Mater. Eng. Perform. 28 (2019) 4707–4717.

    Article  Google Scholar 

  37. I. Farup, A. Mo, Metall. Mater. Trans. A 31 (2000) 1461–1472.

    Article  Google Scholar 

  38. A.B. Phillion, S. Thompson, S.L. Cockcroft, M.A. Wells, Mater. Sci. Eng. A 497 (2008) 388–394.

    Article  Google Scholar 

  39. S. Kou, Acta Mater. 88 (2015) 366–374.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. U1708253 and 51571052)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, L., Liu, Y. et al. Hot cracking behavior of large size GH4742 superalloy vacuum induction melting ingot. J. Iron Steel Res. Int. 29, 1505–1512 (2022). https://doi.org/10.1007/s42243-022-00767-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00767-7

Keywords

Navigation