Skip to main content
Log in

Influence of cerium treatment on inclusion modification and as-cast microstructure of high-strength low-alloy steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The influence of cerium treatment on the inclusion evolution and as-cast microstructure of high-strength low-alloy steel was investigated. Properties including the inclusions characteristics, element distribution, and the in situ solidification were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, and high-temperature confocal laser scanning microscopy, respectively. The results indicated that, after the addition of Ce, the Al2O3 inclusions evolved to form Ce2O2S and CeAlO3 inclusions, which exhibited a decrease in size alongside corresponding increase in their number density. The equiaxed grain ratio exhibited by the as-cast microstructure increased significantly upon the addition of Ce, while a reduction in the segregation and a corresponding increase in the homogeneity of the carbon distribution within the as-cast microstructure were also achieved. The results of the in situ observation of the solidification suggested that the addition of Ce significantly reduced the solidification temperature range, thus reducing the carbon segregation. The nucleation effect imparted by Al2O3, Ce2O2S, and CeAlO3 on the δ-Fe formation was discussed in the context of the disregistry theory, which revealed that the formation of a large number of fine Ce2O2S inclusions promoted δ-Fe formation via heterogeneous nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G.L. Liang, S.W. Yang, H.B. Wu, X.L. Liu, Rare Met. 32 (2013) 129–133.

    Article  Google Scholar 

  2. M.Z. Jiang, Y.C. Yu, H. Li, X. Ren, S.B. Wang, High Temp. Mater. Process. 36 (2016) 145–153.

    Article  Google Scholar 

  3. C.B. Shi, D.L. Zheng, B.S. Guo, J. Li, F. Jiang, Metall. Mater. Trans. B 49 (2018) 3390–3402.

    Article  Google Scholar 

  4. J.H. Park, H. Todoroki, ISIJ Int. 50 (2010) 1333–1346.

    Article  Google Scholar 

  5. C.B. Shi, W.T. Yu, H. Wang, J. Li, M. Jiang, Metall. Mater. Trans. B 48 (2017) 146–161.

    Article  Google Scholar 

  6. Y. Tabatabaei, K.S. Coley, G.A. Irons, S. Sun, Metall. Mater. Trans. B 49 (2018) 375–387.

    Article  Google Scholar 

  7. Q. Ren, L.F. Zhang, Metall. Mater. Trans. B 51 (2020) 589–600.

    Article  Google Scholar 

  8. G. Thewlis, Mater. Sci. Tech. 22 (2006) 153–162.

    Article  Google Scholar 

  9. Y.X. Cao, X.L. Wan, Y.H. Hou, C.R. Niu, Y. Liu, G.Q. Li, Steel Res. Int. 90 (2019) 1900084.

  10. X.P. Ma, X.D. Li, B. Langelier, B. Gault, S. Subramanian, L. Collins, Metall. Mater. Trans. A 49 (2018) 4824–4837.

    Article  Google Scholar 

  11. Q. Wang, L.J. Wang, Y.H. Sun, A.M. Zhao, W. Zhang, J.M. Li, H.B. Dong, K. Chou, J. Alloy. Compd. 815 (2020) 152418.

  12. H. Torkamani, S. Raygan, C.G. Matro, J. Rassizadehghani, Y. Palizdar, D. San-Martin, Met. Mater. Int. 24 (2018) 773–788.

    Article  Google Scholar 

  13. M.X. Guo, H. Suito, ISIJ Int. 39 (1999) 678–686.

    Article  Google Scholar 

  14. C.V.D. Eijk, Ø. Grong, F. Haakonsen, L. Kolbeinsen, G. Tranell, ISIJ Int. 49 (2009) 1046–1050.

    Article  Google Scholar 

  15. J.Z. Gao, P.X. Fu, H.W. Liu, D.Z. Li, Metals 5 (2015) 383–394.

    Article  Google Scholar 

  16. Y.Y. Hou, G.G. Cheng, Metall. Mater. Trans. B 50 (2019) 1322–1333.

    Article  Google Scholar 

  17. D.W. Zhao, H.B. Li, Y. Cui, J. Yang, ISIJ Int. 56 (2016) 1181–1187.

    Article  Google Scholar 

  18. W. Yang, L.F. Zhang, X.H. Wang, Y. Ren, X.F. Liu, Q.L. Shan, ISIJ Int. 53 (2013) 1401–1410.

    Article  Google Scholar 

  19. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, S.R. Story, Metall. Mater. Trans. B 42 (2011) 720–729.

    Article  Google Scholar 

  20. Y.K. Yang, D.P. Zhan, H. Lei, G.X. Qiu, Y.L. Li, Z.H. Jiang, H.S. Zhang, Metall. Mater. Trans. B 50 (2019) 2536–2546.

    Article  Google Scholar 

  21. I. Ohnaka, Trans. ISIJ 26 (1986) 1045–1051.

    Article  Google Scholar 

  22. Q.P. Dong, J.M. Zhang, L. Qian, Y.B. Yin, ISIJ Int. 57 (2017) 814–823.

    Article  Google Scholar 

  23. Y.Y. Hou, G.G. Cheng, Metall. Mater. Trans. B 50 (2019) 1351–1364.

    Article  Google Scholar 

  24. L.A. Simirnov, V.A. Rovnushkin, A.S. Oryshchenko, G.Y. Kalinin, V.G. Milyuts, Metallurgist 59 (2016) 1053–1061.

    Article  Google Scholar 

  25. B.L. Bramfitt, Metall. Trans. 1 (1970) 1987–1995.

    Article  Google Scholar 

  26. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Acta Mater. 48 (2000) 2823–2835.

    Article  Google Scholar 

  27. T.E. Quested, A.L. Greer, Acta Mater. 52 (2004) 3859–3868.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 52074026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Rm., Li, J. & Shi, Cb. Influence of cerium treatment on inclusion modification and as-cast microstructure of high-strength low-alloy steel. J. Iron Steel Res. Int. 29, 1659–1668 (2022). https://doi.org/10.1007/s42243-022-00751-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00751-1

Keywords

Navigation