Skip to main content
Log in

A review on bath fluid flow stirring technologies in EAF steelmaking

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In the contemporary electric arc furnace (EAF) steelmaking industry, increasing contents and temperature homogenization via fluid flow stirring is found to be an effective method of improving production quality and smelting efficiency. It is a trend for different factories with bowl-shaped furnaces to apply the bath fluidity enhancement technology. EAF has plenty of advantages in modern steelmaking industry, and the improvements on the EAF steelmaking process have come up with two major tasks, namely reduction in energy consumption and tap-to-tap time. The latter task requires an essential understanding of every phase in EAF steelmaking process. The flat bath phase with poor bath fluid flow was crucial to the product quality and metallurgical efficiency considering EAF’s bowl-shaped structure. The research of three stirring bath methods, oxygen jets injection, electromagnetic stirring, and bottom blowing, were introduced, and then the detailed parameters of each method with their influences on molten bath fluidity were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.Y. Yan, Industrial Heating (2001) No. 5, 16–18.

    Google Scholar 

  2. P. Wang, Z.Y. Jiang, X.X. Zhang, X.Y. Geng, S.Y. Hao, J. Univ. Sci. Technol. Beijing 36 (2014) 1683–1693.

    Google Scholar 

  3. R.Y. Yin, China Metallurgy (2005) No. 15, 1–7.

    Google Scholar 

  4. J.G. Zhang, Recyclable Resources and Circular Economy 7 (2014) No. 4, 31–33.

    Google Scholar 

  5. L. Xue, Tianjin Metallurgy (2015) No. 5, 9–14.

    Google Scholar 

  6. F. Peng, X. Li, Iron and Steel 52 (2017) No. 4, 7–12.

    Google Scholar 

  7. S. Pauliuk, R.L. Milford, D.B. Müller, J.M. Allwood, Environ. Sci. Technol. 47 (2013) 3448–3454.

    Article  Google Scholar 

  8. S.Q. Li, J. Yu, J.S. Li, China Metallurgy 20 (2010) No. 4, 1–7, 16.

  9. S.Q. Li, H. Sun, J. Yu, F. Pei, Special Steel 20 (2010) No. 6, 21–25.

    Google Scholar 

  10. F. Li, R.Z. Liu, S.Q. Li, Wide and Heavy Plate 31 (2003) No. 6, 21–25.

    Google Scholar 

  11. J. Fu, Z.B. Wang, X.J. Wang, X.P. Mao, J. Iron Steel Res. Int. 11 (2004) No. 4, 1–9.

    Google Scholar 

  12. H.Y. Liu, J. Li, C. Ma, Adv. Mater. Res. 572 (2012) 243–248.

    Article  Google Scholar 

  13. R. Zhu, G.S. Wei, R.Z. Liu, Industrial Heating 44 (2015) No. 1, 1–6, 9.

  14. S. Natschläger, K. Stohl, IFAC Proceed. 40 (2007) 207–211.

  15. B. Bowman, K. Krüger, Arc furnace physics, Verlag Stahleisen Düsseldorf, Berlin, Germany, 2009.

    Google Scholar 

  16. S.N. Timoshenko, Cep. Meтaлypгiя (2012) No. 14, 36–43.

  17. X.Y. Deng, J.C. Ma, W.J. Zhao, B. Cao, H.J. Jin, S. Li, J. Iron Steel Res. 25 (2013) No. 5, 14–18.

    Google Scholar 

  18. D.H. Wakelin, The interaction between gas jets and the surfaces of liquids, including molten metals, University of London, London, UK, 1966.

    Google Scholar 

  19. A. Metzen, G. Bünemann, J. Greinacher, W. Zhang, Metall. Plant Technol. Int. (2000) No. 4, 84–92.

  20. M. Lee, V. Whitney, N. Molloy, Scandinavian J. Metall. 30 (2001) 330–336.

    Google Scholar 

  21. J. Solórzano-López, R. Zenit, M.A. Ramírez-Argáez, Appl. Math. Model. 35 (2011) 4991–5005.

    Article  Google Scholar 

  22. D.S. Kim, H.J. Jung, Y.H. Kim, S.H. Yang, B.D. You, Ironmak. Steelmak. 41 (2014) 321–328.

    Article  Google Scholar 

  23. A. Inc, ANSYS FLUENT 18.2 User's Guide, 2018.

  24. C.L. He, R. Zhu, K. Dong, Y.Q. Qiu, K.M. Sun, G.L. Jiang, Ironmak. Steelmak. 38 (2011) 291–296.

    Article  Google Scholar 

  25. C.L. He, R. Zhu, K. Dong, Y.Q. Qiu, J. Iron Steel Res. Int. 18 (2011) No. 9, 13–20.

    Article  Google Scholar 

  26. S. Chen, R. Zhu, J. Li, C. He, M. Lv, J. Iron Steel Res. Int. 21 (2014) 589–595.

    Article  Google Scholar 

  27. I. Sumi, Y. Kishimoto, Y. Kikuchi, H. Igarashi, ISIJ Int. 46 (2006) 1312–1317.

    Article  Google Scholar 

  28. B. Allemand, P. Bruchet, C. Champinot, S. Melen, F. Porzucek, Revue De Métallurgie 98 (2002) 571–587.

    Article  Google Scholar 

  29. Z.L. Li, D.Q. Cang, Steel Res. Int. 88 (2017) 1600209.

    Article  Google Scholar 

  30. L.Z. Yang, Z.S. Yang, G.S. Wei, Y.F. Guo, F. Chen, F.Q. Zheng, ISIJ Int. 59 (2019) 2272–2282.

    Article  Google Scholar 

  31. M.W. Thring, M.P. Newby, Symposium (Int.) on Combustion 4 (1953) 789–796.

  32. M. Alam, J. Naser, G. Brooks, Metall. Mater. Trans. B 41 (2010) 636–645.

    Article  Google Scholar 

  33. S.Y. Hu, R. Zhu, K. Dong, G.S. Wei, Can. Metal. Quart. 57 (2018) 219–234.

    Article  Google Scholar 

  34. L.X. Qin, D.Q. Cang, D. Xu, J.F. Duan, Adv. Mater. Res. 402 (2011) 425–431.

    Article  Google Scholar 

  35. E. Malfa, F. Maddalena, C. Giavani, F. Memoli, Scanmet II 28 (2005) 44–50.

    Google Scholar 

  36. X. Liu, B.Q. Yang, W.B. Gu, BaoSteel Technol. (1999) No. 5, 22–26.

    Google Scholar 

  37. W. Liu, R.Z. Liu, Industrial Heating 45 (2016) No. 5, 22–25.

    Google Scholar 

  38. M. Jeong, V.R. Kumar, H.D. Kim, T. Setoguchi, S. Matsuo, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, A Computational Characterization of the Supersonic Coherent Jet, Florida, USA, 2004.

  39. J.E. Anderson, P.C. Mathur, Supersonic coherent gas jet for providing gas into a liquid, USA, US6383445, 2002.

  40. G.S. Wei, R. Zhu, T. Cheng, K. Dong, L.Z. Yang, X.T. Wu, Metal. Mater. Trans. B 49 (2018) 361–374.

    Article  Google Scholar 

  41. G.S. Wei, R. Zhu, T. Cheng, K. Dong, R.Z. Liu, Ironmak. Steelmak. 45 (2017) 828–838.

    Article  Google Scholar 

  42. H.Z. Guo, P. Zhao, K.L. Wang, J. Fu, T.W. Ma, J. Univ. Sci. Technol. Beijing 17 (1995) 284–288.

    Google Scholar 

  43. M. Ramírez, J. Alexis, G. Trapaga, P. Jönsson, J. Mckelliget, ISIJ Int. 41 (2001) 1146–1155.

    Article  Google Scholar 

  44. K.L. Wang, Y.S. Xie, J. Fu, T.W. Ma, H.Z. Guo, Mining and Metallurgy 5 (1996) No. 3, 61–66.

    Google Scholar 

  45. O. Widlund, U. Sand, O. Hjortstam, X. Zhang, Västerås (Sweden) ABB 150 (2012) 217–223.

  46. N. Arzpeyma, O. Widlund, M. Ersson, P. Jonsson, ISIJ Int. 53 (2013) 48–55.

    Article  Google Scholar 

  47. C.N. Muralinath, Adv. Mater. Res. 794 (2013) 37–43.

    Article  Google Scholar 

  48. L. Teng, M. Meador, P. Ljungqvist, Steel Res. Int. 88 (2017) 1600202.

    Article  Google Scholar 

  49. M.F. Jiang, L.F. Li, Res. Iron Steel 5 (1994) 46–49.

    Google Scholar 

  50. G.H. Ma, R. Zhu, K. Dong, Z. Li, R.Z. Liu, L.Z. Yang, G.S. Wei, Ironmak. Steelmak. 43 (2016) 594–599.

    Article  Google Scholar 

  51. L.F. Li, M.F. Jiang, Steelmaking (1994) No. 3, 55–60.

    Google Scholar 

  52. J. Wolf, F. Winterfeld, Eur. Communities Rep. 1988 (1988) 44.

    Google Scholar 

  53. K. Dong, R. Zhu, W.J. Liu, Adv. Mater. Res. 361–363 (2012) 639–643.

    Google Scholar 

  54. B.K. Li, J.C. He, Advances in Mechanics (1999) No. 29, 77–86.

    Google Scholar 

  55. Y.L. Gu, R. Zhu, K. Dong, X. Bao, G.J. Xie, Z.Q. Liu, D. Shou, G.H. Ma, Steelmaking (2013) No. 29, 28–30.

    Google Scholar 

  56. F.H. Liu, R. Zhu, K. Dong, R. Bai, Ironmak. Steelmak. 44 (2016) 159–167.

    Article  Google Scholar 

  57. F.H. Liu, R. Zhu, K. Dong, X. Bao, S.L. Fan, ISIJ Int. 55 (2015) 2365–2373.

    Article  Google Scholar 

  58. G.S. Wei, R. Zhu, K. Dong, G.H. Ma, T. Cheng, Metall. Mater. Trans. B 47 (2016) 3066–3079.

    Article  Google Scholar 

  59. Y.G. Liu, S.Y. Chen, J. Wang, K. Dong, Industrial Heating 40 (2011) No. 1, 63–65.

    Google Scholar 

  60. H. Wang, R. Zhu, R. Liu, D. Shou, G.J. Xie, S.L. Fan, Y.L. Gu, Industrial Heating 43 (2014) No. 2, 12–17.

    Google Scholar 

  61. M. Kirschen, R. Ehrengruber, K.M. Zettl, RHI Bulletin 1 (2016) 8–13.

    Google Scholar 

  62. H. Wang, H. Yu, L. Teng, S. Seetharaman, J. Min. Metal. B Metall. 52 (2016) No. 1, 1–8.

    Article  Google Scholar 

  63. H.J. Wang, R. Zhu, X.L. Wang, Z.Z. Li, Miner. Process. Extr. Metall. Rev. 126 (2017) 47–53.

    Article  Google Scholar 

  64. G.S. Wei, R. Zhu, K. Dong, Z.Z. Li, L.Z. Yang, X.T. Wu, Ironmak. Steelmak. 45 (2017) 839–846.

    Article  Google Scholar 

  65. C. Yigit, G. Coskun, E. Buyukkaya, U. Durmaz, H.R. Güven, Appl. Therm. Eng. 90 (2015) 831–837.

    Article  Google Scholar 

  66. L.Z. Yang, R. Zhu, K. Dong, W.J. Liu, G.H. Ma, Adv. Mater. Res. 881–883 (2014) 1540–1544..

    Article  Google Scholar 

  67. Y.N. Toulouevski, I.Y. Zinurov, Innovation in electric arc furnaces, Springer Berlin Heidelberg, Berlin, Germany, 2010.

    Book  Google Scholar 

  68. J.M. Wang, F. Zhu, Y.L. Fang, W.K. Li, Iron Steel Res. 45 (2017) No. 4, 57–62.

    Google Scholar 

  69. H.J. Odenthal, A. Kemminger, F. Krause, L. Sankowski, N. Uebber, N. Vogl, Steel Res. Int. 89 (2018) 1700098.

    Article  Google Scholar 

  70. O.J.P. Gonzalez, M.A. RamíRez-Argáez, A.N. Conejo, ISIJ Int. 50 (2010) 1–8.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 51804345) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-shi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Lz., Hu, H., Yang, Zs. et al. A review on bath fluid flow stirring technologies in EAF steelmaking. J. Iron Steel Res. Int. 28, 1341–1351 (2021). https://doi.org/10.1007/s42243-021-00650-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00650-x

Keywords

Navigation