Skip to main content
Log in

Ferrosilicon alloy granules prepared through centrifugal granulation process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A novel granulation process that involved the use of a rotary multi-nozzles cup atomizer and water cooling was proposed for ferroalloy manufacturing. The effects of rotating speed and nozzle diameter on the properties of FeSi75 alloy (containing 75 wt.% Si) granules were investigated. Results indicated that median granule diameter decreased as rotating speed increased, and initially increased and then decreased as nozzle diameter increased. The optimal conditions for the granulation of FeSi75 alloy were a rotating speed of 150 r/min and nozzle diameter of 10 or 12 mm. The phase composition, micromorphology, and elemental distribution of the FeSi75 alloy granules were also studied by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectrometry. In order to provide guidance for the layout and water depth of the tank, the solidification behavior of ferrosilicon alloy droplet was numerically studied. A simplified model was established to elucidate the traveling trajectory and heat transfer of alloy droplet in air and cooling water during the atomization process. The solidification time of droplet with different thicknesses of solidification layer increased with the increase in alloy droplet diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Pande, M. Guo, X. Guo, D. Geysen, S. Devisscher, B. Blanpain, P. Wollants, Ironmak. Steelmak. 37 (1998) 502–511.

    Article  Google Scholar 

  2. X. Wang, China Foundry Machinery Technology 5 (2006) 28–30.

    Google Scholar 

  3. J. Farrell, W. Forgeng, K. Rieder, Casting and sizing method for ferromanganese, US, 3483914DA, 1969.

  4. C. Dumay, A. Cramb, Mater. Trans. B 26 (1995) 173–176.

    Article  Google Scholar 

  5. L. Ekström, J. Lundström, Energy recovery in GRANSHOT process, KTH Industrial Engineering and Management, Stockholm, Schweden, 2008.

    Google Scholar 

  6. K. Beskow, P. Vesterberg, E. Dupon, Nitric Oxide 10 (2011) 92–100.

    Google Scholar 

  7. Y. Cohen, G. Amir, N. Da’As, S. Gillis, D. Rund, A. Polliack, American Journal of Hematology 71 (2002) 47–49.

    Article  Google Scholar 

  8. T.J. Lester, J.W. Johnson, J. Cuttner, American Journal of Medicine 79 (1985) 43–48.

    Article  Google Scholar 

  9. P. Vesterberg, K. Beskow, P.A. Lundstrm, in: 8th China International Ferro-Alloys Conference, Hangzhou, China, 2011, pp. 232–253.

    Google Scholar 

  10. Y. Zhao, Modell. Simul. Mater. Sci. Eng. 12 (2004) 959–971.

    Article  Google Scholar 

  11. S. Pickering, N. Hay, T. Roylance, G. Thomas, Ironmak. Steelmak. 12 (1985) 14–21.

    Google Scholar 

  12. Y. Kashiwaya, I. Yutaro, T. Akiyama, ISIJ Int. 50 (2010) 1245–1251.

    Article  Google Scholar 

  13. Y. Kashiwaya, I. Yutaro, T. Akiyama, ISIJ Int. 50 (2010) 1252–1258.

    Article  Google Scholar 

  14. D. Wang, H. Peng, X. Ling, Energy Procedia 61 (2014) 1824–1829.

    Article  Google Scholar 

  15. Y. Zhao, Modell. Simul. Mater. Sci. Eng. 12 (2004) 973–983.

    Article  Google Scholar 

  16. Y. Qin, X. Lv, C. Bai, C. Pan, G. Qiu, J. Iron Steel Res. Int. 84 (2013) 852–862.

    Article  Google Scholar 

  17. H. Zhang, H. Ni, X. Li, W. Zhu, J. Xiong, R. Cheng, Z. Lv, Energy Metall. Ind. 31 (2012) 15–19.

    Google Scholar 

  18. C. Bi, Ferro-alloys 6 (1990) 17–20.

    Google Scholar 

  19. X. Zhao, H. Chen, E. Müller, C. Drasar, J. Alloy. Compd. 365 (2004) 206–210.

    Article  Google Scholar 

  20. I. Yamauchi, S. Ueyama, I. Ohnaka, Mater. Sci. Eng. A 208 (1996) 108–115.

    Article  Google Scholar 

  21. Y. Qin, X. Lv, C. Bai, P. Chen, G. Qiu, J. Zhang, Steel Res. Int. 85 (2014) 44–52.

    Article  Google Scholar 

  22. E. Lee, S. Ahn, Acta Metall. Mater. 42 (1994) 3231–3243.

    Article  Google Scholar 

  23. J. Welty, C. Wicks, R. Wilson, Fundamentals of momentum, heat, and mass transfer, 3rd ed., Wiley, New York, USA, 1984.

    Google Scholar 

  24. H. Liu, R. Rangel, E. Laverna, Acta Metall. Mater. 42 (1994) 3277–3289.

    Article  Google Scholar 

  25. M. Gutierrez, E. Lavernia, G. Trapaga, Metall. Trans. A 20 (1989) 71–85.

    Article  Google Scholar 

  26. H. Li, Y. Lan, B. Zhang, Casting Forging Welding 37 (2008) 35–37.

    Google Scholar 

  27. J. Liu, Q. Yu, P. Li, W. Du, Appl. Therm. Eng. 40 (2012) 351–357.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are especially thankful to the National Natural Science Foundation of China (Grant No. 2018YFC1900501) and Graduate Scientific Research and Innovation Foundation of Chongqing (CYB19003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-wei Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Wc., Lv, Xw., Yan, Zm. et al. Ferrosilicon alloy granules prepared through centrifugal granulation process. J. Iron Steel Res. Int. 27, 1247–1258 (2020). https://doi.org/10.1007/s42243-020-00430-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00430-z

Keywords

Navigation